1
|
Ding EA, Yokokura TJ, Wang R, Kumar S. Dissecting neurofilament tail sequence-phosphorylation-structure relationships with multicomponent reconstituted protein brushes. Proc Natl Acad Sci U S A 2024; 121:e2410109121. [PMID: 39602260 PMCID: PMC11626179 DOI: 10.1073/pnas.2410109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, bottlebrush-shaped intermediate filaments abundant in the axonal cytoskeleton. Each NF subunit contains a long intrinsically disordered tail domain, which protrudes from the NF core to form a "brush" surrounding each NF. Precisely how the tails' variable charge patterns and repetitive phosphorylation sites mediate their conformation within the brush remains an open question in axonal biology. We address this problem by grafting recombinant NF tail protein constructs NF-Light, -Medium, and -Heavy (NFL, NFM, and NFH) to surfaces, yielding protein brushes of defined stoichiometry that can be phosphorylated in vitro. Atomic force microscopy measurements reveal that brush height depends on composition monotonically but not always linearly for binary NFL:NFM or NFL:NFH systems, and that NFM-based brushes are highly extended, while brushes incorporating the much larger NFH are surprisingly compact even after multisite phosphorylation. Complementary self-consistent field theory (SCFT) predicts multilayer brush morphologies for NFM and phosphorylated NFH brushes. Further experiments and SCFT analysis with designed mutants reveal that N-terminal negative charges in the NFH tail repel phosphorylated residues to generate the multilayer morphology, while the C-terminal charge-neutral region contributes to multilayer brush morphology but not total brush height. Charge-shuffled NFM variants show that charge segregation promotes brush collapse near physiological ionic strengths. Collectively, this study supports a role for NFM in establishing a dynamic range for NF brush conformation, lending insight into previous in vitro and in vivo findings. More broadly, this work establishes a platform for dissecting contributions of disordered protein sequence to conformation at interfaces.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Takashi J. Yokokura
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA94158
| |
Collapse
|
2
|
Wang B, Li J, Song Y, Qin X, Lu X, Huang W, Peng C, Wei J, Huang D, Wang W. CLK2 Condensates Reorganize Nuclear Speckles and Induce Intron Retention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309588. [PMID: 39119950 PMCID: PMC11481226 DOI: 10.1002/advs.202309588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Intron retention (IR) constitutes a less explored form of alternative splicing, wherein introns are retained within mature mRNA transcripts. This investigation demonstrates that the cell division cycle (CDC)-like kinase 2 (CLK2) undergoes liquid-liquid phase separation (LLPS) within nuclear speckles in response to heat shock (HS). The formation of CLK2 condensates depends on the intrinsically disordered region (IDR) located within the N-terminal amino acids 1-148. Phosphorylation at residue T343 sustains CLK2 kinase activity and promotes overall autophosphorylation, which inhibits the LLPS activity of the IDR. These CLK2 condensates initiate the reorganization of nuclear speckles, transforming them into larger, rounded structures. Moreover, these condensates facilitate the recruitment of splicing factors into these compartments, restricting their access to mRNA for intron splicing and promoting the IR. The retained introns lead to the sequestration of transcripts within the nucleus. These findings extend to the realm of glioma stem cells (GSCs), where a physiological state mirroring HS stress inhibits T343 autophosphorylation, thereby inducing the formation of CLK2 condensates and subsequent IR. Notably, expressing the CLK2 condensates hampers the maintenance of GSCs. In conclusion, this research unveils a mechanism by which IR is propelled by CLK2 condensates, shedding light on its role in coping with cellular stress.
Collapse
Affiliation(s)
- Bing Wang
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yanyang Song
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Xuhui Qin
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Xia Lu
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Wei Huang
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Chentai Peng
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Jinxia Wei
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Donghui Huang
- Institute of Reproduction Health ResearchTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wei Wang
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| |
Collapse
|
3
|
Paoletti F. ATP binding to Nerve Growth Factor (NGF) and pro-Nerve Growth Factor (proNGF): an endogenous molecular switch modulating neurotrophins activity. Biochem Soc Trans 2024; 52:1293-1304. [PMID: 38716884 DOI: 10.1042/bst20231089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.
Collapse
Affiliation(s)
- Francesca Paoletti
- Institute of Crystallography - C.N.R. - Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| |
Collapse
|
4
|
Gupta MN, Uversky VN. Reexamining the diverse functions of arginine in biochemistry. Biochem Biophys Res Commun 2024; 705:149731. [PMID: 38432110 DOI: 10.1016/j.bbrc.2024.149731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Arginine in a free-state and as part of peptides and proteins shows distinct tendency to form clusters. In free-form, it has been found useful in cryoprotection, as a drug excipient for both solid and liquid formulations, as an aggregation suppressor, and an eluent in protein chromatography. In many cases, the mechanisms by which arginine acts in all these applications is either debatable or at least continues to attract interest. It is quite possible that arginine clusters may be involved in many such applications. Furthermore, it is possible that such clusters are likely to behave as intrinsically disordered polypeptides. These considerations may help in understanding the roles of arginine in diverse applications and may even lead to better strategies for using arginine in different situations.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya Str., 7, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Pacios LF, Sánchez F, Ponz F. Intrinsic disorder in the dynamic evolution of structure, stability, and flexibility of potyviral VLP assemblies: A computational study. Int J Biol Macromol 2024; 254:127798. [PMID: 37924902 DOI: 10.1016/j.ijbiomac.2023.127798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
An all-atom Molecular Dynamics (MD) study was applied to three viral nanoparticles (VLPs) of Turnip mosaic virus (TuMV), a potyvirus: the particles genetically functionalized with two peptides, VIP (human vasoactive intestinal peptide) and VEGFR (peptide derived from the human receptor 3 of the vascular endothelial growth factor), and the non-functionalized VLP. Previous experimental results showed that VIP-VLP was the only construct of the three that was not viable. VLPs subjected to our MD study were modeled by four complete turns of the particle involving 35 subunits of the coat protein (CP). The MD simulations showed differences in structures and interaction energies associated to the crucial contribution of the disordered N-terminal arms of CP to the global stability of the particle. These differences suggested an overall stability greater in VEGFR-VLP and smaller in VIP-VLP as compared to the unfunctionalized VLP. Our novel MD study of potyviral VLPs revealed essential clues about structure and interactions of these assembled protein particles and suggests that the computational prediction of the viability of VLPs can be a valuable contribution in the field of viral nanobiotechnology.
Collapse
Affiliation(s)
- Luis F Pacios
- Departamento de Biotecnología-Biología Vegetal, ETSIAAB, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
7
|
Bianchi G, Mangiagalli M, Ami D, Ahmed J, Lombardi S, Longhi S, Natalello A, Tompa P, Brocca S. Condensation of the N-terminal domain of human topoisomerase 1 is driven by electrostatic interactions and tuned by its charge distribution. Int J Biol Macromol 2024; 254:127754. [PMID: 38287572 DOI: 10.1016/j.ijbiomac.2023.127754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) is pivotal in forming biomolecular condensates, which are crucial in several biological processes. Intrinsically disordered regions (IDRs) are typically responsible for driving LLPS due to their multivalency and high content of charged residues that enable the establishment of electrostatic interactions. In our study, we examined the role of charge distribution in the condensation of the disordered N-terminal domain of human topoisomerase I (hNTD). hNTD is densely charged with oppositely charged residues evenly distributed along the sequence. Its LLPS behavior was compared with that of charge permutants exhibiting varying degrees of charge segregation. At low salt concentrations, hNTD undergoes LLPS. However, LLPS is inhibited by high concentrations of salt and RNA, disrupting electrostatic interactions. Our findings show that, in hNTD, moderate charge segregation promotes the formation of liquid condensates that are sensitive to salt and RNA, whereas marked charge segregation results in the formation of aberrant condensates. Although our study is based on a limited set of protein variants, it supports the applicability of the "stickers-and-spacers" model to biomolecular condensates involving highly charged IDRs. These results may help generate reliable models of the overall LLPS behavior of supercharged polypeptides.
Collapse
Affiliation(s)
- Greta Bianchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Junaid Ahmed
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
8
|
Páez-Pérez ED, Hernández-Sánchez A, Alfaro-Saldaña E, García-Meza JV. Disorder and amino acid composition in proteins: their potential role in the adaptation of extracellular pilins to the acidic media, where Acidithiobacillus thiooxidans grows. Extremophiles 2023; 27:31. [PMID: 37848738 DOI: 10.1007/s00792-023-01317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
There are few biophysical studies or structural characterizations of the type IV pilin system of extremophile bacteria, such as the acidophilic Acidithiobacillus thiooxidans. We set out to analyze their pili-comprising proteins, pilins, because these extracellular proteins are in constant interaction with protons of the acidic medium in which At. thiooxidans grows. We used the web server Operon Mapper to analyze and identify the cluster codified by the minor pilin of At. thiooxidans. In addition, we carried an in-silico characterization of such pilins using the VL-XT algorithm of PONDR® server. Our results showed that structural disorder prevails more in pilins of At. thiooxidans than in non-acidophilic bacteria. Further computational characterization showed that the pilins of At. thiooxidans are significantly enriched in hydroxy (serine and threonine) and amide (glutamine and asparagine) residues, and significantly reduced in charged residues (aspartic acid, glutamic acid, arginine and lysine). Similar results were obtained when comparing pilins from other Acidithiobacillus and other acidophilic bacteria from another genus versus neutrophilic bacteria, suggesting that these properties are intrinsic to pilins from acidic environments, most likely by maintaining solubility and stability in harsh conditions. These results give guidelines for the application of extracellular proteins of acidophiles in protein engineering.
Collapse
Affiliation(s)
- Edgar D Páez-Pérez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 78210, San Luis Potosí, SLP, Mexico.
| | - Araceli Hernández-Sánchez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 78210, San Luis Potosí, SLP, Mexico.
| | - Elvia Alfaro-Saldaña
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 78210, San Luis Potosí, SLP, Mexico
| | - J Viridiana García-Meza
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 78210, San Luis Potosí, SLP, Mexico
| |
Collapse
|
9
|
Flores-Téllez D, Tankmar MD, von Bülow S, Chen J, Lindorff-Larsen K, Brodersen P, Arribas-Hernández L. Insights into the conservation and diversification of the molecular functions of YTHDF proteins. PLoS Genet 2023; 19:e1010980. [PMID: 37816028 PMCID: PMC10617740 DOI: 10.1371/journal.pgen.1010980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/31/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
YT521-B homology (YTH) domain proteins act as readers of N6-methyladenosine (m6A) in mRNA. Members of the YTHDF clade determine properties of m6A-containing mRNAs in the cytoplasm. Vertebrates encode three YTHDF proteins whose possible functional specialization is debated. In land plants, the YTHDF clade has expanded from one member in basal lineages to eleven so-called EVOLUTIONARILY CONSERVED C-TERMINAL REGION1-11 (ECT1-11) proteins in Arabidopsis thaliana, named after the conserved YTH domain placed behind a long N-terminal intrinsically disordered region (IDR). ECT2, ECT3 and ECT4 show genetic redundancy in stimulation of primed stem cell division, but the origin and implications of YTHDF expansion in higher plants are unknown, as it is unclear whether it involves acquisition of fundamentally different molecular properties, in particular of their divergent IDRs. Here, we use functional complementation of ect2/ect3/ect4 mutants to test whether different YTHDF proteins can perform the same function when similarly expressed in leaf primordia. We show that stimulation of primordial cell division relies on an ancestral molecular function of the m6A-YTHDF axis in land plants that is present in bryophytes and is conserved over YTHDF diversification, as it appears in all major clades of YTHDF proteins in flowering plants. Importantly, although our results indicate that the YTH domains of all arabidopsis ECT proteins have m6A-binding capacity, lineage-specific neo-functionalization of ECT1, ECT9 and ECT11 happened after late duplication events, and involves altered properties of both the YTH domains, and, especially, of the IDRs. We also identify two biophysical properties recurrent in IDRs of YTHDF proteins able to complement ect2 ect3 ect4 mutants, a clear phase separation propensity and a charge distribution that creates electric dipoles. Human and fly YTHDFs do not have IDRs with this combination of properties and cannot replace ECT2/3/4 function in arabidopsis, perhaps suggesting different molecular activities of YTHDF proteins between major taxa.
Collapse
Affiliation(s)
- Daniel Flores-Téllez
- University of Copenhagen, Biology Department. Copenhagen, Denmark
- Universidad Francisco de Vitoria, Facultad de Ciencias Experimentales. Pozuelo de Alarcón (Madrid), Spain
| | | | - Sören von Bülow
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | - Junyu Chen
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | | | - Peter Brodersen
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | | |
Collapse
|
10
|
Koren G, Meir S, Holschuh L, Mertens HDT, Ehm T, Yahalom N, Golombek A, Schwartz T, Svergun DI, Saleh OA, Dzubiella J, Beck R. Intramolecular structural heterogeneity altered by long-range contacts in an intrinsically disordered protein. Proc Natl Acad Sci U S A 2023; 120:e2220180120. [PMID: 37459524 PMCID: PMC10372579 DOI: 10.1073/pnas.2220180120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/02/2023] [Indexed: 07/20/2023] Open
Abstract
Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins' structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore, to understand their biological function, it is critical to depict how the structural ensemble statistics correlate to the IDPs' amino acid sequence. Here, using small-angle X-ray scattering and time-resolved Förster resonance energy transfer (trFRET), we study the intramolecular structural heterogeneity of the neurofilament low intrinsically disordered tail domain (NFLt). Using theoretical results of polymer physics, we find that the Flory scaling exponent of NFLt subsegments correlates linearly with their net charge, ranging from statistics of ideal to self-avoiding chains. Surprisingly, measuring the same segments in the context of the whole NFLt protein, we find that regardless of the peptide sequence, the segments' structural statistics are more expanded than when measured independently. Our findings show that while polymer physics can, to some level, relate the IDP's sequence to its ensemble conformations, long-range contacts between distant amino acids play a crucial role in determining intramolecular structures. This emphasizes the necessity of advanced polymer theories to fully describe IDPs ensembles with the hope that it will allow us to model their biological function.
Collapse
Affiliation(s)
- Gil Koren
- The School of Physics and Astronomy, Department of Condensed Matter, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
| | - Sagi Meir
- The School of Physics and Astronomy, Department of Condensed Matter, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
| | - Lennard Holschuh
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universit Freiburg, FreiburgD-79104, Germany
| | | | - Tamara Ehm
- The School of Physics and Astronomy, Department of Condensed Matter, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, MünchenD-80539, Germany
| | - Nadav Yahalom
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences and Tel Aviv University Center for Light–Matter Interaction, Tel Aviv University, Tel Aviv6997801, Israel
| | - Adina Golombek
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences and Tel Aviv University Center for Light–Matter Interaction, Tel Aviv University, Tel Aviv6997801, Israel
| | - Tal Schwartz
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences and Tel Aviv University Center for Light–Matter Interaction, Tel Aviv University, Tel Aviv6997801, Israel
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg22607, Germany
| | - Omar A. Saleh
- BMSE Program, University of California, Santa Barbara, CA93110
- Materials Department, University of California, Santa Barbara, CA93110
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universit Freiburg, FreiburgD-79104, Germany
- Cluster of Excellence livMatS @ FIT–Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universit Freiburg, FreiburgD-79104, Germany
| | - Roy Beck
- The School of Physics and Astronomy, Department of Condensed Matter, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
11
|
Kulkarni P, Brocca S, Dunker AK, Longhi S. Per Aspera ad Chaos: Vladimir Uversky's Odyssey through the Strange World of Intrinsically Disordered Proteins. Biomolecules 2023; 13:1015. [PMID: 37371595 DOI: 10.3390/biom13061015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Until the late 1990s, we believed that protein function required a unique, well-defined 3D structure encrypted in the amino acid sequence [...].
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy
| | - A Keith Dunker
- Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sonia Longhi
- Architecture and Function of Biological Macromolecules (AFMB), UMR 7257, Aix Marseille University and CNRS, 13288 Marseille, France
| |
Collapse
|
12
|
Paoletti F, Covaceuszach S, Cassetta A, Calabrese AN, Novak U, Konarev P, Grdadolnik J, Lamba D, Golič Grdadolnik S. Distinct conformational changes occur within the intrinsically unstructured pro-domain of pro-Nerve Growth Factor in the presence of ATP and Mg 2. Protein Sci 2023; 32:e4563. [PMID: 36605018 PMCID: PMC9878617 DOI: 10.1002/pro.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Nerve growth factor (NGF), the prototypical neurotrophic factor, is involved in the maintenance and growth of specific neuronal populations, whereas its precursor, proNGF, is involved in neuronal apoptosis. Binding of NGF or proNGF to TrkA, p75NTR , and VP10p receptors triggers complex intracellular signaling pathways that can be modulated by endogenous small-molecule ligands. Here, we show by isothermal titration calorimetry and NMR that ATP binds to the intrinsically disordered pro-peptide of proNGF with a micromolar dissociation constant. We demonstrate that Mg2+ , known to play a physiological role in neurons, modulates the ATP/proNGF interaction. An integrative structural biophysics analysis by small angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry unveils that ATP binding induces a conformational rearrangement of the flexible pro-peptide domain of proNGF. This suggests that ATP may act as an allosteric modulator of the overall proNGF conformation, whose likely distinct biological activity may ultimately affect its physiological homeostasis.
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | | | - Alberto Cassetta
- Institute of Crystallography—C.N.R.—Trieste OutstationTriesteItaly
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Urban Novak
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | - Petr Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | - Doriano Lamba
- Institute of Crystallography—C.N.R.—Trieste OutstationTriesteItaly
- Interuniversity Consortium “Biostructures and Biosystems National Institute”RomeItaly
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| |
Collapse
|
13
|
Khan SM, Bhatkalkar S, Kumar D, Ali A, Sharma S, Sachar S. Surfactant influences the interaction of copper sulfide nanoparticles with biomolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|