1
|
Capek J, Sepúlveda M, Bacova J, Rodriguez-Pereira J, Zazpe R, Cicmancova V, Nyvltova P, Handl J, Knotek P, Baishya K, Sopha H, Smid L, Rousar T, Macak JM. Ultrathin TiO 2 Coatings via Atomic Layer Deposition Strongly Improve Cellular Interactions on Planar and Nanotubular Biomedical Ti Substrates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5627-5636. [PMID: 38275195 PMCID: PMC10859894 DOI: 10.1021/acsami.3c17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
This work aims to investigate the chemical and/or structural modification of Ti and Ti-6Al-4V (TiAlV) alloy surfaces to possess even more favorable properties toward cell growth. These modifications were achieved by (i) growing TiO2 nanotube layers on these substrates by anodization, (ii) surface coating by ultrathin TiO2 atomic layer deposition (ALD), or (iii) by the combination of both. In particular, an ultrathin TiO2 coating, achieved by 1 cycle of TiO2 ALD, was intended to shade the impurities of F- and V-based species in tested materials while preserving the original structure and morphology. The cell growth on TiO2-coated and uncoated TiO2 nanotube layers, Ti foils, and TiAlV alloy foils were compared after incubation for up to 72 h. For evaluation of the biocompatibility of tested materials, cell lines of different tissue origin, including predominantly MG-63 osteoblastic cells, were used. For all tested nanomaterials, adding an ultrathin TiO2 coating improved the growth of MG-63 cells and other cell lines compared with the non-TiO2-coated counterparts. Here, the presented approach of ultrathin TiO2 coating could be used potentially for improving implants, especially in terms of shading problematic F- and V-based species in TiO2 nanotube layers.
Collapse
Affiliation(s)
- Jan Capek
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Marcela Sepúlveda
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Jana Bacova
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jhonatan Rodriguez-Pereira
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Raul Zazpe
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Veronika Cicmancova
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jiri Handl
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Petr Knotek
- Department
of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Kaushik Baishya
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Hanna Sopha
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Lenka Smid
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Tomas Rousar
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jan M. Macak
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| |
Collapse
|
2
|
Abushahba F, Kylmäoja E, Areid N, Hupa L, Vallittu PK, Tuukkanen J, Närhi T. Osteoblast Attachment on Bioactive Glass Air Particle Abrasion-Induced Calcium Phosphate Coating. Bioengineering (Basel) 2024; 11:74. [PMID: 38247951 PMCID: PMC10813256 DOI: 10.3390/bioengineering11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Air particle abrasion (APA) using bioactive glass (BG) effectively decontaminates titanium (Ti) surface biofilms and the retained glass particles on the abraded surfaces impart potent antibacterial properties against various clinically significant pathogens. The objective of this study was to investigate the effect of BG APA and simulated body fluid (SBF) immersion of sandblasted and acid-etched (SA) Ti surfaces on osteoblast cell viability. Another goal was to study the antibacterial effect against Streptococcus mutans. Square-shaped 10 mm diameter Ti substrates (n = 136) were SA by grit blasting with aluminum oxide particles, then acid-etching in an HCl-H2SO4 mixture. The SA substrates (n = 68) were used as non-coated controls (NC-SA). The test group (n = 68) was further subjected to APA using experimental zinc-containing BG (Zn4) and then mineralized in SBF for 14 d (Zn4-CaP). Surface roughness, contact angle, and surface free energy (SFE) were calculated on test and control surfaces. In addition, the topography and chemistry of substrate surfaces were also characterized. Osteoblastic cell viability and focal adhesion were also evaluated and compared to glass slides as an additional control. The antibacterial effect of Zn4-CaP was also assessed against S. mutans. After immersion in SBF, a mineralized zinc-containing Ca-P coating was formed on the SA substrates. The Zn4-CaP coating resulted in a significantly lower Ra surface roughness value (2.565 μm; p < 0.001), higher wettability (13.35°; p < 0.001), and higher total SFE (71.13; p < 0.001) compared to 3.695 μm, 77.19° and 40.43 for the NC-SA, respectively. APA using Zn4 can produce a zinc-containing calcium phosphate coating that demonstrates osteoblast cell viability and focal adhesion comparable to that on NC-SA or glass slides. Nevertheless, the coating had no antibacterial effect against S. mutans.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Libyan International Medical University (LIMU), Benghazi 339P+62Q, Libya
| | - Elina Kylmäoja
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
| | - Leena Hupa
- Johan Gadolin Process Chemistry Center, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland;
| | - Pekka K. Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Timo Närhi
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| |
Collapse
|
3
|
Wang Z, Wang J, Wu R, Wei J. Construction of functional surfaces for dental implants to enhance osseointegration. Front Bioeng Biotechnol 2023; 11:1320307. [PMID: 38033823 PMCID: PMC10682203 DOI: 10.3389/fbioe.2023.1320307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Dental implants have been extensively used in patients with defects or loss of dentition. However, the loss or failure of dental implants is still a critical problem in clinic. Therefore, many methods have been designed to enhance the osseointegration between the implants and native bone. Herein, the challenge and healing process of dental implant operation will be briefly introduced. Then, various surface modification methods and emerging biomaterials used to tune the properties of dental implants will be summarized comprehensively.
Collapse
Affiliation(s)
- Zhenshi Wang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Runfa Wu
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Hayashi T, Asakura M, Koie S, Hasegawa S, Mieki A, Aimu K, Kawai T. In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition. Int J Mol Sci 2023; 24:10101. [PMID: 37373249 DOI: 10.3390/ijms241210101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Zirconia is a promising material for dental implants; however, an appropriate surface modification procedure has not yet been identified. Atomic layer deposition (ALD) is a nanotechnology that deposits thin films of metal oxides or metals on materials. The aim of this study was to deposit thin films of titanium dioxide (TiO2), aluminum oxide (Al2O3), silicon dioxide (SiO2), and zinc oxide (ZnO) on zirconia disks (ZR-Ti, ZR-Al, ZR-Si, and ZR-Zn, respectively) using ALD and evaluate the cell proliferation abilities of mouse fibroblasts (L929) and mouse osteoblastic cells (MC3T3-E1) on each sample. Zirconia disks (ZR; diameter 10 mm) were fabricated using a computer-aided design/computer-aided manufacturing system. Following the ALD of TiO2, Al2O3, SiO2, or ZnO thin film, the thin-film thickness, elemental distribution, contact angle, adhesion strength, and elemental elution were determined. The L929 and MC3T3-E1 cell proliferation and morphologies on each sample were observed on days 1, 3, and 5 (L929) and days 1, 4, and 7 (MC3T3-E1). The ZR-Ti, ZR-Al, ZR-Si, and ZR-Zn thin-film thicknesses were 41.97, 42.36, 62.50, and 61.11 nm, respectively, and their average adhesion strengths were 163.5, 140.9, 157.3, and 161.6 mN, respectively. The contact angle on ZR-Si was significantly lower than that on all the other specimens. The eluted Zr, Ti, and Al amounts were below the detection limits, whereas the total Si and Zn elution amounts over two weeks were 0.019 and 0.695 ppm, respectively. For both L929 and MC3T3-E1, the cell numbers increased over time on ZR, ZR-Ti, ZR-Al, and ZR-Si. Particularly, cell proliferation in ZR-Ti exceeded that in the other samples. These results suggest that ALD application to zirconia, particularly for TiO2 deposition, could be a new surface modification procedure for zirconia dental implants.
Collapse
Affiliation(s)
- Tatsuhide Hayashi
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Masaki Asakura
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shin Koie
- Department of Maxillofacial Surgery, Aichi Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Shogo Hasegawa
- Department of Maxillofacial Surgery, Aichi Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Akimichi Mieki
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Koki Aimu
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Tatsushi Kawai
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
5
|
Kylmäoja E, Abushahba F, Holopainen J, Ritala M, Tuukkanen J. Monocyte Differentiation on Atomic Layer-Deposited (ALD) Hydroxyapatite Coating on Titanium Substrate. Molecules 2023; 28:molecules28083611. [PMID: 37110845 PMCID: PMC10143381 DOI: 10.3390/molecules28083611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hydroxyapatite (HA; Ca10(PO4)6(OH)2) coating of bone implants has many beneficial properties as it improves osseointegration and eventually becomes degraded and replaced with new bone. We prepared HA coating on a titanium substrate with atomic layer deposition (ALD) and compared monocyte differentiation and material resorption between ALD-HA and bone. After stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), human peripheral blood monocytes differentiated into resorbing osteoclasts on bovine bone, but non-resorbing foreign body cells were observed on ALD-HA. The analysis of the topography of ALD-HA and bone showed no differences in wettability (water contact angle on ALD-HA 86.2° vs. 86.7° on the bone), but the surface roughness of ALD-HA (Ra 0.713 µm) was significantly lower compared to bone (Ra 2.30 µm). The cellular reaction observed on ALD-HA might be a consequence of the topographical properties of the coating. The absence of resorptive osteoclasts on ALD-HA might indicate inhibition of their differentiation or the need to modify the coating to induce osteoclast differentiation.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Jani Holopainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| |
Collapse
|
6
|
Pandey LM. Design of Biocompatible and Self-antibacterial Titanium Surfaces for Biomedical Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|