1
|
Cheng QS, Xu PY, Luo SC, Chen AZ. Advances in Adhesive Materials for Oral and Maxillofacial Soft Tissue Diseases. Macromol Biosci 2024:e2400494. [PMID: 39588806 DOI: 10.1002/mabi.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Oral diseases represent a prevalent global health burden, profoundly affecting patients' quality of life. Given the involvement of oral mucosa and muscles in diverse physiological functions, coupled with clinical aesthetics considerations, repairing oral and maxillofacial soft tissue defects poses a formidable challenge. Wet-adhesive materials are regarded as promising oral repair materials due to their unique advantages in easily overcoming physical and biological barriers in the oral cavity. This review first introduces the intricate wet-state environment prevalent in the oral cavity, meticulously explaining the fundamental physical and chemical adhesion mechanisms that underpin adhesive materials. It then comprehensively summarizes the diverse types of adhesives utilized in stomatology, encompassing polysaccharide, protein, and synthetic polymer adhesive materials. The review further evaluates the latest research advancements in utilizing these materials to treat various oral and maxillofacial soft tissue diseases, including oral mucosal diseases, periodontitis, peri-implantitis, oral and maxillofacial skin defects, and maxillofacial tumors. Finally, it also highlights the promising future prospects and pivotal challenges related to stomatology application of multifunctional adhesive materials.
Collapse
Affiliation(s)
- Qiu-Shuang Cheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| |
Collapse
|
2
|
Li Y, He J, Liu J, Um W, Ding J. Challenges and opportunities of poly(amino acid) nanomedicines in cancer therapy. Nanomedicine (Lond) 2024; 19:2495-2504. [PMID: 39381990 PMCID: PMC11520535 DOI: 10.1080/17435889.2024.2402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Poly(amino acid) nanomedicines hold significant promise for cancer therapy. However, their clinical translation has not matched the extensive efforts of scientists or the burgeoning body of research. The therapeutic outcomes with most nanomedicines often fall short of the promising results observed in animal experiments. This review explores the challenges faced in cancer therapy using poly(amino acid) nanomedicines, particularly addressing the controversies surrounding the enhanced permeability and retention effect and the lack of methods for controlled and reproducible mass production of poly(amino acid) nanomedicines. Furthermore, this review examines the opportunities emerging in this field due to the rapid advancements in artificial intelligence.
Collapse
Affiliation(s)
- Yuce Li
- College of Life Sciences & Health, Wuhan University of Science & Technology, 2 Huangjiahuxi Road, Wuhan, 430065, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Jing He
- College of Life Sciences & Health, Wuhan University of Science & Technology, 2 Huangjiahuxi Road, Wuhan, 430065, P. R. China
| | - Jixiu Liu
- College of Life Sciences & Health, Wuhan University of Science & Technology, 2 Huangjiahuxi Road, Wuhan, 430065, P. R. China
| | - Wooram Um
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
3
|
Díaz-Puertas R, Rodríguez-Cañas E, Lozoya-Agulló MJ, Badía-Hernández PV, Álvarez-Martínez FJ, Falcó A, Mallavia R. Bovine serum albumin and lysozyme nanofibers as versatile platforms for preserving loaded bioactive compounds. Int J Biol Macromol 2024; 280:136019. [PMID: 39341317 DOI: 10.1016/j.ijbiomac.2024.136019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
In this study, the electrospinning procedure was optimized to create polyethylene oxide (PEO) NFs highly enriched in proteins with non-structural functions while preserving their activity. For this purpose, several immune-related proteins of low, medium and high molecular weights were used as molecular models. Initially, the electrospinning parameters were adjusted using 3 % w/w PEO and bovine serum albumin (BSA, 5-20 % w/w). As determined by FESEM, their average diameters ranged from 301 to 752 nm, and those with higher protein content (15-20 %) yielded more uniform NFs in both size and morphology terms. Protein integrity remained stable as determined by SDS-PAGE and FTIR. Similar results were observed for the polypeptide lysozyme (LYZ) when incorporated in NFs under these settings. To further explore the potential of these materials, the antimicrobial peptide piscidin (PIS) and an antibody (Ab, HRP-IgG) were used to produce BSA/PIS, LYZ/PIS and BSA/Ab NFs and evaluate the preservation of their activity. The antibacterial assays showed that, in most bacterial species, the activity of PIS remained consistent after being incorporated into the NFs. Furthermore, the activity of HRP-IgG was maintained within the NFs, with enhanced preservation observed in BSA/Ab NFs. These findings expand the possibilities of protein utilization across various applications through nanomaterials.
Collapse
Affiliation(s)
- Rocío Díaz-Puertas
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Enrique Rodríguez-Cañas
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - María Jesús Lozoya-Agulló
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Pedro Valentín Badía-Hernández
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Francisco Javier Álvarez-Martínez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Alberto Falcó
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Spanish National Research Council (IATS-CSIC), 12595 Cabanes, Castellón, Spain.
| | - Ricardo Mallavia
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| |
Collapse
|
4
|
Gou Y, Hu L, Liao X, He J, Liu F. Advances of antimicrobial dressings loaded with antimicrobial agents in infected wounds. Front Bioeng Biotechnol 2024; 12:1431949. [PMID: 39157443 PMCID: PMC11327147 DOI: 10.3389/fbioe.2024.1431949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Wound healing is a complex process that is critical for maintaining the barrier function of the skin. However, when a large quantity of microorganisms invade damaged skin for an extended period, they can cause local and systemic inflammatory responses. If left untreated, this condition may lead to chronic infected wounds. Infected wounds significantly escalate wound management costs worldwide and impose a substantial burden on patients and healthcare systems. Recent clinical trial results suggest that the utilization of effective antimicrobial wound dressing could represent the simplest and most cost-effective strategy for treating infected wounds, but there has hitherto been no comprehensive evaluation reported on the efficacy of antimicrobial wound dressings in promoting wound healing. Therefore, this review aims to systematically summarize the various types of antimicrobial wound dressings and the current research on antimicrobial agents, thereby providing new insights for the innovative treatment of infected wounds.
Collapse
Affiliation(s)
- Yifan Gou
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Liwei Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuejuan Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing He
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fan Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Yoon JP, Kim H, Park SJ, Kim DH, Kim JY, Kim DH, Chung SW. Nanofiber Graft Therapy to Prevent Shoulder Stiffness and Adhesions after Rotator Cuff Tendon Repair: A Comprehensive Review. Biomedicines 2024; 12:1613. [PMID: 39062186 PMCID: PMC11274509 DOI: 10.3390/biomedicines12071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Stiffness and adhesions following rotator cuff tears (RCTs) are common complications that negatively affect surgical outcomes and impede healing, thereby increasing the risk of morbidity and failure of surgical interventions. Tissue engineering, particularly through the use of nanofiber scaffolds, has emerged as a promising regenerative medicine strategy to address these complications. This review critically assesses the efficacy and limitations of nanofiber-based methods in promoting rotator cuff (RC) regeneration and managing postrepair stiffness and adhesions. It also discusses the need for a multidisciplinary approach to advance this field and highlights important considerations for future clinical trials.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.P.Y.); (S.-J.P.); (D.-H.K.)
| | - Hyunjin Kim
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.P.Y.); (S.-J.P.); (D.-H.K.)
| | - Sung-Jin Park
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.P.Y.); (S.-J.P.); (D.-H.K.)
| | - Dong-Hyun Kim
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.P.Y.); (S.-J.P.); (D.-H.K.)
| | - Jun-Young Kim
- Department of Orthopedic Surgery, School of Medicine, Catholic University, Daegu 38430, Republic of Korea;
| | - Du Han Kim
- Department of Orthopedic Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Seok Won Chung
- Department of Orthopedic Surgery, Konkuk University Medical Center, Seoul 05030, Republic of Korea;
| |
Collapse
|
6
|
Ge X, Zhang L, Wei X, Long X, Han Y. Plasma Surface Treatment and Application of Polyvinyl Alcohol/Polylactic Acid Electrospun Fibrous Hemostatic Membrane. Polymers (Basel) 2024; 16:1635. [PMID: 38931986 PMCID: PMC11207798 DOI: 10.3390/polym16121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, an improved PVA/PLA fibrous hemostatic membrane was prepared by electrospinning technology combined with air plasma modification. The plasma treatment was used to modify PLA to enhance the interlayer bonding between the PVA and PLA fibrous membranes first, then modify the PVA to improve the hemostatic capacity. The surfaces of the PLA and PVA were oxidized after air plasma treatment, the fibrous diameter was reduced, and roughness was increased. Plasma treatment enhanced the interfacial bond strength of PLA/PVA composite fibrous membrane, and PLA acted as a good mechanical support. Plasma-treated PVA/PLA composite membranes showed an increasing liquid-enrichment capacity of 350% and shortened the coagulation time to 258 s. The hemostatic model of the liver showed that the hemostatic ability of plasma-treated PVA/PLA composite membranes was enhanced by 79% compared to untreated PVA membranes, with a slight improvement over commercially available collagen. The results showed that the plasma-treated PVA/PLA fibers were able to achieve more effective hemostasis, which provides a new strategy for improving the hemostatic performance of hemostatic materials.
Collapse
Affiliation(s)
| | | | | | | | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; (X.G.); (L.Z.); (X.W.); (X.L.)
| |
Collapse
|
7
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
8
|
Mishra B, Pathak D, Verma D, Gupta MK. Nanofibrous composite from chitosan-casein polyelectrolyte complex for rapid hemostasis in rat models in vivo. Int J Biol Macromol 2024; 269:131882. [PMID: 38677684 DOI: 10.1016/j.ijbiomac.2024.131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Bleeding causes ∼5.8 million deaths globally; half of the patients die if rapid hemostasis is not achieved. Here, we report a chitosan-casein (CC)-based nanofibrous polyelectrolyte complex (PEC) that could clot blood within 10 s in the rat femoral artery model in vivo. The nanofiber formation by self-assembly was also optimized for process parameters (concentration, mixing ratio, pH, and ultrasonication). Results showed that increasing the concentration of chitosan from 10 % to 90 % in the formulation increased the productivity (r = 0.99) of PECs but led to increased blood clotting time (r = 0.90) due to an increase in zeta potential (r = 0.98), fiber diameter (r = 0.93), and decreased surface porosity (r = -0.99), absorption capacity (r = -0.99). The pH also influenced the zeta potential of PEC, with an optimized pH of 8.0 ± 0.1 yielding clear nanofibers. Sonication improved the segregation of nanofibers by promoting water removal. The optimized PECs containing chitosan and casein in the ratio of 30:70 (CC30) at a pH of 8.0 and dehydration under sonication could clot the blood within 9 ± 2 s in vitro and 9 ± 2 s in rat femoral artery puncture model. The CC30 formulation did not cause any irritation or corrosion on rat skin. Histopathology and immunohistochemistry of various organs showed that CC30 was biocompatible and non-immunogenic under in vivo conditions.
Collapse
Affiliation(s)
- Balaram Mishra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 140004, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India; National Animal Resource Facility for Biomedical Research (NARFBR), Indian Council of Medical Research, Genome Valley, Telengana 500078, India.
| |
Collapse
|
9
|
Reggiardo G, Aghina B, Landi F. Topical application of hyaluronic acid and amino acids in hard-to-heal wounds: a cost-effectiveness analysis. J Wound Care 2024; 33:210-219. [PMID: 38573902 DOI: 10.12968/jowc.2024.33.4.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
OBJECTIVE The aim of this cost-effectiveness analysis was to estimate the monetary cost required to achieve a gain in health benefit. An analytic model to evaluate the cost-effectiveness of a topical medical device comprising a mixture of hyaluronic acid and amino acids (HA+AA medical device) (Vulnamin, Professional Dietetics SpA, Italy) as compared to standard of care (SoC) for hard-to-heal (chronic) wounds is presented. METHOD Retrospective data was analysed from a cohort of patients as well as information from published literature. For each paper, the following information was extracted: number of patients enrolled in each treatment arm and the results of prespecified reviewed outcomes. RESULTS A total of six studies involving 378 patients were included in this pooled analysis. Findings showed that treatment with the HA+AA medical device has the potential to lower consumption of resources. With regards to wound healing, in both superficial and deep wounds, treatment benefits of the HA+AA medical device included: rapid wound size reduction; faster healing; reduction of dressing changes; reduced infection risk; and reduced treatment costs. Results showed the HA+AA medical device to be 32% more cost-effective than comparators in the treatment of hard-to-heal wounds (time horizon selected=six months). CONCLUSION The findings of this analysis showed that treatment with the HA+AA medical device is a valid alternative to SoC care because it is cheaper, and its utility and effectiveness are greater. In addition, the results of the analysis showed a direct relationship between the time to complete healing and the increase in costs (increasing the period of time to reach complete healing increases the costs associated with the treatment).
Collapse
Affiliation(s)
- Giorgio Reggiardo
- Department of Biostatistics, Consortium for Biological and Pharmacological Evaluations (CVBF), Pavia, Italy
| | | | - Francesco Landi
- Department of Orthopedic and Rheumatological Aging Sciences, 'Agostino Gemelli' University Polyclinic Foundation IRCCS, 00168 Rome, Italy
- Director of the Complex Internal and Geriatric Medicine Unit, 'Agostino Gemelli' University Polyclinic Foundation IRCCS, 00168 Rome, Italy
| |
Collapse
|
10
|
Zhang Y, Lu Y, Li Y, Xu Y, Song W. Poly(Glutamic Acid)-Engineered Nanoplatforms for Enhanced Cancer Phototherapy. Curr Drug Deliv 2024; 21:326-338. [PMID: 36650626 DOI: 10.2174/1567201820666230116164511] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 01/19/2023]
Abstract
Phototherapies, including photothermal therapy and photodynamic therapy, have gained booming development over the past several decades for their attractive non-invasiveness nature, negligible adverse effects, minimal systemic toxicity, and high spatial selectivity. Phototherapy usually requires three components: light irradiation, photosensitizers, and molecular oxygen. Photosensitizers can convert light energy into heat or reactive oxygen species, which can be used in the tumor-killing process. The direct application of photosensitizers in tumor therapy is restricted by their poor water solubility, fast clearance, severe toxicity, and low cellular uptake. The encapsulation of photosensitizers into nanostructures is an attractive strategy to overcome these critical limitations. Poly(glutamic acid) (PGA) is a kind of poly(amino acid)s containing the repeating units of glutamic acid. PGA has superiority for cancer treatment because of its good biocompatibility, low immunogenicity, and modulated pH responsiveness. The hydrophilicity nature of PGA allows the physical entrapment of photosensitizers and anticancer drugs via the construction of amphiphilic polymers. Moreover, the pendent carboxyl groups of PGA enable chemical conjugation with therapeutic agents. In this mini-review, we highlight the stateof- the-art design and fabrication of PGA-based nanoplatforms for phototherapy. We also discuss the potential challenges and future perspectives of phototherapy, and clinical translation of PGA-based nanomedicines.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Yicong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai-200093, P. R. China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai-200093, P. R. China
| |
Collapse
|
11
|
Zhao K, Hu Z, Zhou M, Chen Y, Zhou F, Ding Z, Zhu B. Bletilla striata composite nanofibrous membranes prepared by emulsion electrospinning for enhanced healing of diabetic wounds. J Biomater Appl 2023; 38:424-437. [PMID: 37599387 DOI: 10.1177/08853282231197901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Diabetic wounds impose enormous distress and financial burden on patients, and finding effective dressings to manage wounds is critical. As a Chinese herbal medicine with a long history of Clinical application, Bletilla striata has significant medicinal effects in the therapy of various wounds. In this study, PLA and the pharmacodynamic substances of Bletilla striata were prepared into fibrous scaffolds by emulsion electrospinning technology for the management of diabetic wounds in mice. The results of scanning electron microscopy showed that the core-shell structure fibre was successfully obtained by emulsion electrospinning. The fibre membrane exhibited excellent water absorption capability and water vapor transmission rate, could inhibit the growth of Staphylococcus aureus and Pseudomonas aeruginosa, had good compatibility, and achieved excellent healing effect on diabetic wounds. Especially in the in vivo wound healing experiment, the wound healing rate of composite fibre membrane treatment reached 98.587 ± 2.149% in 16 days. This work demonstrated the good therapeutic effect of the developed fibrous membrane to diabetic wound, and this membrane could be potentially applied to chronic wound healing.
Collapse
Affiliation(s)
- Kai Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbo Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Cui D, Li M, Zhang P, Rao F, Huang W, Wang C, Guo W, Wang T. Polydopamine-Coated Polycaprolactone Electrospun Nanofiber Membrane Loaded with Thrombin for Wound Hemostasis. Polymers (Basel) 2023; 15:3122. [PMID: 37514511 PMCID: PMC10385294 DOI: 10.3390/polym15143122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Hemorrhagic shock is the primary cause of death in patients with severe trauma, and the development of rapid and efficient hemostatic methods is of great significance in saving the lives of trauma patients. In this study, a polycaprolactone (PCL) nanofiber membrane was prepared by electrospinning. A PCL-PDA loading system was developed by modifying the surface of polydopamine (PDA), using inspiration from mussel adhesion protein, and the efficient and stable loading of thrombin (TB) was realized to ensure the bioactivity of TB. The new thrombin loading system overcomes the disadvantages of harsh storage conditions, poor strength, and ease of falling off, and it can use thrombin to start a rapid coagulation cascade reaction, which has the characteristics of fast hemostasis, good biocompatibility, high safety, and a wide range of hemostasis. The physicochemical properties and biocompatibility of the PCL-PDA-TB membrane were verified by scanning electron microscopy, the cell proliferation test, the cell adhesion test, and the extract cytotoxicity test. Red blood cell adhesion, platelet adhesion, dynamic coagulation time, and animal models all verified the coagulation effect of the PCL-PDA-TB membrane. Therefore, the PCL-PDA-TB membrane has great potential in wound hemostasis applications, and should be widely used in various traumatic hemostatic scenarios.
Collapse
Affiliation(s)
- Dapeng Cui
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Ming Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peng Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Feng Rao
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Wei Huang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Chuanlin Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Wei Guo
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
13
|
Yang X, Xu Y, Fu J, Shen Z. Nanoparticle delivery of TFOs is a novel targeted therapy for HER2 amplified breast cancer. BMC Cancer 2023; 23:680. [PMID: 37468837 DOI: 10.1186/s12885-023-11176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE The human EGFR2 (HER2) signaling pathway is one of the most actively studied targets in cancer transformation research. Ttriplex-forming oligonucleotides (TFOs) activate DNA damage and induce apoptosis. We aim to encapsulate TFO-HER2 with nano-particle ZW-128 to suppress breast cell growth in vitro and in vivo. EXPERIMENTAL DESIGN We designed a set of TFO fragments targeting HER2 and verified their effectiveness. We encapsulated TFO-HER2 in ZW-128 to form nano-drug TFO@ZW-128. Cell counting kit 8, flow cytometry, and western blotting were used to evaluate the effect of TFO@ZW-128 on cell proliferation and the expressions of related proteins. The ant-itumor effect of TFO@ZW-128 was evaluated in vivo using nude mice breast cancer model. RESULTS TFO@ZW-128 had efficient cellular uptake in amplified HER2 breast cancer cells. TFO@ZW-128 showed an 80-fold increase in TFO utilization compared with TFO-HER2 in the nude mouse breast cancer model. Meanwhile, TFO@ZW-128 dramatically inhibited the growth of HER2-overexpressing tumors compared with TFO-HER2 (P < 0.05). Furthermore, TFO@ZW-128-induced cell apoptosis was in a p53-independent manner. CONCLUSIONS In this study, we designed nano-drug TFO@ZW-128, which has proven effective and non-toxic in targeted therapy for ectopic HER2-expressing tumors.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200333, China
| | - Yi Xu
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200333, China.
| | - Zan Shen
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
14
|
Yu DG, Huang C. Electrospun Biomolecule-Based Drug Delivery Systems. Biomolecules 2023; 13:1152. [PMID: 37509187 PMCID: PMC10376994 DOI: 10.3390/biom13071152] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Drug delivery, mainly a professional term in pharmaceutics, is a field of interdisciplinary intersection and integration [...].
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jun-Gong Road, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jun-Gong Road, Shanghai 200093, China
| |
Collapse
|
15
|
Ao F, Luo X, Shen W, Ge X, Li P, Zheng Y, Wu S, Mao Y, Luo Y. Multifunctional electrospun membranes with hydrophilic and hydrophobic gradients property for wound dressing. Colloids Surf B Biointerfaces 2023; 225:113276. [PMID: 36989814 DOI: 10.1016/j.colsurfb.2023.113276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Achieving sustained and stable release of macromolecular antibacterial agents and unidirectional transport of liquids in targeted environment is still a challenge to be addressed in the management of wounds with large amounts of tissue exudates. In this work, a multilayer electrospun membrane (ethylcellulose-ethylcellulose/gelatin-quercetin/Eudragit L-100/polyethylene glycol, EC-EC/Gel-Q/EL/PEG) was designed with hydrophobic-hydrophilic gradients and drug sustained-release properties controlled by self-pumping effect and prepared using sequential electrospinning technology. The capillary force of different layers in the multilayer membrane could be controlled by precisely tuning the polymer concentrations of the inner and middle layers to extract water directly from hydrophobic inner ethylcellulose (EC) layer to hydrophilic middle ethylcellulose/gelatin (EC/Gel) layer. The droplets could not penetrate the hydrophobic side, but the drug molecules in the outer layer quercetin-loaded Eudragit L-100 (Q/EL/PEG) membrane moved after absorbing a large amount of water. The drug release behavior of multilayer wound dressing mainly followed the Korsmeyer-Peppas model. This multifunctional electrospun membrane could rapidly drive the biofluid outflow, effectively block the invasion of external contaminants and continuously release anti-inflammatory drugs, without any obvious cytotoxicity to mouse fibroblast cells. Hence, the above results indicate the excellent therapeutic potential of the proposed biomaterial as a wound dressing for diabetic patients.
Collapse
|
16
|
Sheokand B, Vats M, Kumar A, Srivastava CM, Bahadur I, Pathak SR. Natural polymers used in the dressing materials for wound healing: Past, present and future. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Yusuf Aliyu A, Adeleke OA. Nanofibrous Scaffolds for Diabetic Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030986. [PMID: 36986847 PMCID: PMC10051742 DOI: 10.3390/pharmaceutics15030986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic wounds are one of the secondary health complications that develop in individuals who have poorly managed diabetes mellitus. This is often associated with delays in the wound healing process, resulting from long-term uncontrolled blood glucose levels. As such, an appropriate therapeutic approach would be maintaining blood glucose concentration within normal ranges, but this can be quite challenging to achieve. Consequently, diabetic ulcers usually require special medical care to prevent complications such as sepsis, amputation, and deformities, which often develop in these patients. Although several conventional wound dressings, such as hydrogels, gauze, films, and foams, are employed in the treatment of such chronic wounds, nanofibrous scaffolds have gained the attention of researchers because of their flexibility, ability to load a variety of bioactive compounds as single entities or combinations, and large surface area to volume ratio, which provides a biomimetic environment for cell proliferation relative to conventional dressings. Here, we present the current trends on the versatility of nanofibrous scaffolds as novel platforms for the incorporation of bioactive agents suitable for the enhancement of diabetic wound healing.
Collapse
Affiliation(s)
- Anna Yusuf Aliyu
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
18
|
Xu X, Lv H, Zhang M, Wang M, Zhou Y, Liu Y, Yu DG. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Surendranath M, Ramesan RM, Nair P, Parameswaran R. Electrospun Mucoadhesive Zein/PVP Fibroporous Membrane for Transepithelial Delivery of Propranolol Hydrochloride. Mol Pharm 2023; 20:508-523. [PMID: 36373686 DOI: 10.1021/acs.molpharmaceut.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mucoadhesive drug delivery systems have been extensively studied to effectively reduce the limitations of conventional drug delivery systems. Zein and polyvinyl pyrrolidone (PVP) are appraised for mucoadhesive properties. This study focuses on developing a mechanically stable zein/PVP electrospun membrane for propranolol hydrochloride (PL) transport. Fourier transform infrared, Raman spectra, and swelling studies gave evidence for PVP crosslinking, whereas circular dichroism spectroscopy revealed crosslinking of zein owing to the conformational change from α-helix to β-sheet. A 10 h thermal treatment of zein/PVP imparted 3.92 ± 0.13 MPa tensile strength to the matrix. Thermally crosslinked electrospun zein/PVP matrix showed 22.1 ± 0.1 g mm work of adhesion in porcine buccal mucosa tissue. Qualitative and quantitative evaluation of cytotoxicity in RPMI 2650 has been carried out. The in vitro drug release profile of PL from thermally crosslinked zein/PVP best fitted with the Korsmeyer-Peppas model. Immunostaining of β-catenin adherens junctional protein confirmed the absence of paracellular transport through the junctional opening. Still, drug permeation was observed through the porcine buccal mucosa, attributed to the transcellular transport of PL owing to its lipophilicity. The ex vivo permeation of PL through porcine buccal mucosa was also evaluated.
Collapse
Affiliation(s)
- Medha Surendranath
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| | - Rekha M Ramesan
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| | - Prakash Nair
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| |
Collapse
|
20
|
Barakat HS, Freag MS, Gaber SM, Al Oufy A, Abdallah OY. Development of Verapamil Hydrochloride-loaded Biopolymer-based Composite Electrospun Nanofibrous Mats: In vivo Evaluation of Enhanced Burn Wound Healing without Scar Formation. Drug Des Devel Ther 2023; 17:1211-1231. [PMID: 37113467 PMCID: PMC10128156 DOI: 10.2147/dddt.s389329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/04/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Researchers aim for new heights in wound healing to produce wound dressings with unique features. Natural, synthetic, biodegradable, and biocompatible polymers especially in the nanoscale are being employed to support and provide efficient wound management. Economical and environmentally friendly sustainable wound management alternatives are becoming an urgent issue to meet future needs. Nanofibrous mats possess unique properties for ideal wound healing. They mimic the physical structure of the natural extracellular matrix (ECM), promote hemostasis, and gas permeation. Their interconnected nanoporosity prevents wound dehydration and microbial infiltration. Purpose To prepare and evaluate a novel verapamil HCl-loaded environmentally friendly composite, with biopolymer-based electrospun nanofibers suitable for application as wound dressings providing adequate wound healing with no scar formation. Methods Composite nanofibers were prepared by electrospinning of a blend of the natural biocompatible polymers, sodium alginate (SA) or zein (Z) together with polyvinyl alcohol (PVA). Composite nanofibers were characterized in terms of morphology, diameter, drug entrapment efficiency, and release. In vivo study of the therapeutic efficacy of verapamil HCl-loaded nanofibers on a Sprague Dawley rat model with dermal burn wound was investigated in terms of percent wound closure, and presence of scars. Results Combining PVA with SA or Z improved the electrospinnability and properties of the developed nanofibers. Verapamil HCl-loaded composite nanofibers showed good pharmaceutical attributes favorable for wound healing including, fiber diameter ∼150 nm, high entrapment efficiency (∼80-100%) and biphasic controlled drug release for 24 h. In vivo study demonstrated promising potentials for wound healing without scaring. Conclusion The developed nanofibrous mats combined the beneficial properties of the biopolymers and verapamil HCl to provide an increased functionality by exploiting the unique advantages of nanofibers in wound healing at a small dose proved to be insufficient in case of the conventional dosage form.
Collapse
Affiliation(s)
- Hebatallah S Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Correspondence: Hebatallah S Barakat, Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, PO Box 21521, Alexandria, Egypt, Tel +2 01002198334, Email
| | - May S Freag
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sarah M Gaber
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Affaf Al Oufy
- Department of Material & Manufacturing Engineering, Faculty of Engineering, Galala University, Galala, Egypt
- Department of Textile Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Delivery of streptomycin to the rat colon by use of electrospun nanofibers. Sci Rep 2022; 12:21503. [PMID: 36513721 PMCID: PMC9747919 DOI: 10.1038/s41598-022-25769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Drug-loaded electrospun nanofibers are potential drug carrier systems that may optimize disease treatment while reducing the impact on commensal microbes. The feasibility of streptomycin-loaded pullulan nanofibers fabricated from a green electrospinning procedure using water as the solvent was assessed. We conducted a rat study including a group treated with streptomycin-loaded nanofibers (STR-F, n = 5), a group treated with similar concentrations of streptomycin in the drinking water (STR-W, n = 5), and a non-treated control group (CTR, n = 5). Streptomycin was successfully loaded into nanofibers and delivered by this vehicle, which minimized the quantity of the drug released in the ileal compartment of the gut. Ingested streptomycin-resistant E. coli colonized of up to 106 CFU/g feces, revealing a selective effect of streptomycin even when given in the low amounts allowed by the nanofiber-based delivery. 16S amplicon sequencing of the indigenous microbiota revealed differential effects in the three groups. An increase of Peptostreptococcaceae in the cecum of STR-F animals may indicate that the fermentation of nanofibers directly or indirectly promoted growth of bacteria within this family. Our results elucidate relevant properties of electrospun nanofibers as a novel vehicle for delivery of antimicrobials to the large intestine.
Collapse
|
22
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
24
|
The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers (Basel) 2022; 14:polym14224947. [PMID: 36433073 PMCID: PMC9693208 DOI: 10.3390/polym14224947] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to develop a novel ultrathin fibrous membrane with a core-sheath structure as an antioxidant food packaging membrane. The core-sheath structure was prepared by coaxial electrospinning, and the release of active substances was regulated by its special structure. Ferulic acid (FA) was incorporated into the electrospun zein/polyethylene oxide ultrathin fibers to ensure their synergistic antioxidant properties. We found that the prepared ultrathin fibers had a good morphology and smooth surface. The internal structure of the fibers was stable, and the three materials that we used were compatible. For the different loading positions, it was observed that the core layer ferulic-acid-loaded fibers had a sustained action, while the sheath layer ferulic-acid-loaded fibers had a pre-burst action. Finally, apples were selected for packaging using fibrous membranes to simulate practical applications. The fibrous membrane was effective in reducing water loss and apple quality loss, as well as extending the shelf life. According to these experiments, the FA-loaded zein/PEO coaxial electrospinning fiber can be used as antioxidant food packaging and will also undergo more improvements in the future.
Collapse
|
25
|
Topuz F. Rapid Sublingual Delivery of Piroxicam from Electrospun Cyclodextrin Inclusion Complex Nanofibers. ACS OMEGA 2022; 7:35083-35091. [PMID: 36211067 PMCID: PMC9535703 DOI: 10.1021/acsomega.2c03987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Piroxicam (Px) is a nonsteroidal anti-inflammatory drug (NSAID) used for the treatment of osteoarthritis and rheumatoid arthritis. It is administered orally; however, its poor water solubility causes low loading to the nonconventional drug delivery systems (DDSs), such as electrospun fibers. Furthermore, the rapid dissolution of DDS and fast release of the embedded drugs are crucial for oral delivery of drugs to patients who are unconscious or suffering from dysphagia. In this regard, this study reports the development of rapidly dissolving cyclodextrin (CD)-based inclusion complex (IC) nanofibers by waterborne electrospinning for fast oral delivery of Px. Scanning electron microscopy analysis revealed the formation of bead-free fibers with a mean diameter range of 170-500 nm at various concentrations of Px; increasing the Px loading decreased the fiber diameter. The formation of IC was demonstrated by X-ray diffraction (XRD) analysis by the disappearance of crystalline peaks of Px. Likewise, differential scanning calorimetry (DSC) analysis showed the disappearance of the melting peak of the embedded Px due to IC formation. Both Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the presence of Px within the fibers. 1H NMR experiments demonstrated Px preservation in the fibers after six months. Px-loaded nanofibers were employed for sublingual drug delivery. To mimic the environment of the mouth, the nanofibers were treated with artificial saliva, which revealed the instant dissolution of the nanofibers. Furthermore, dissolution experiments were performed on the tissues wetted with artificial saliva, where the dissolution of the fibers could be extended to a few seconds, demonstrating the suitability of the materials for sublingual oral drug delivery. Overall, this paper, for the first time, reports the rapid oral delivery of Px from polymer-free CD fibers produced by waterborne electrospinning without the requirement of any carrier polymer and toxic solvent.
Collapse
|
26
|
Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers (Basel) 2022; 14:polym14193990. [PMID: 36235934 PMCID: PMC9570808 DOI: 10.3390/polym14193990] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Electrospun porous nanofibers have large specific surface areas and abundant active centers, which can effectively improve the properties of nanofibers. In the field of photocatalysis, electrospun porous nanofibers can increase the contact area of loaded photocatalytic particles with light, shorten the electron transfer path, and improve photocatalytic activity. In this paper, the main pore−forming mechanisms of electrospun porous nanofiber are summarized as breath figures, phase separation (vapor−induced phase separation, non−solvent−induced phase separation, and thermally induced phase separation) and post−processing (selective removal). Then, the application of electrospun porous nanofiber loading photocatalytic particles in the degradation of pollutants (such as organic, inorganic, and bacteria) in water is introduced, and its future development prospected. Although porous structures are beneficial in improving the photocatalytic performance of nanofibers, they reduce their mechanical properties. Therefore, strategies for improving the mechanical properties of electrospun porous nanofibers are also briefly discussed.
Collapse
|
27
|
Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022; 17:4137-4162. [PMID: 36118177 PMCID: PMC9480606 DOI: 10.2147/ijn.s370340] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a major threat to oral health, prompting scientists to continuously study new treatment techniques. The nanofibrous membrane prepared via electrospinning has a large specific surface area and high porosity. On the one hand, electrospun nanofibers can improve the absorption capacity of proteins and promote the expression of specific genes. On the other hand, they can improve cell adhesion properties and prevent fibroblasts from passing through the barrier membrane. Therefore, electrospinning has unique advantages in periodontal treatment. At present, many oral nanofibrous membranes with antibacterial, anti-inflammatory, and tissue regeneration properties have been prepared for periodontal treatment. First, this paper introduces the electrospinning process. Then, the commonly used polymers of electrospun nanofibrous membranes for treating periodontitis are summarized. Finally, different types of nanofibrous membranes prepared via electrospinning for periodontal treatment are presented, and the future evolution of electrospinning to treat periodontitis is described.
Collapse
Affiliation(s)
- Ping Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.,Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yufeng Xie
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, 200093, People's Republic of China
| |
Collapse
|
28
|
Zhou Y, Wang M, Yan C, Liu H, Yu DG. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022; 12:1254. [PMID: 36139093 PMCID: PMC9496154 DOI: 10.3390/biom12091254] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oral ulcers affect oral and systemic health and have high prevalence in the population. There are significant individual differences in the etiology and extent of the disease among patients. In the treatment of oral ulcers, nanofiber films can control the drug-release rate and enable long-term local administration. Compared to other drug-delivery methods, nanofiber films avoid the disadvantages of frequent administration and certain side effects. Electrospinning is a simple and effective method for preparing nanofiber films. Currently, electrospinning technology has made significant breakthroughs in energy-saving and large-scale production. This paper summarizes the polymers that enable oral mucosal adhesion and the active pharmaceutical ingredients used for oral ulcers. Moreover, the therapeutic effects of currently available electrospun nanofiber films on oral ulcers in animal experiments and clinical trials are investigated. In addition, solvent casting and cross-linking methods can be used in conjunction with electrospinning techniques. Based on the literature, more administration systems with different polymers and loading components can be inspired. These administration systems are expected to have synergistic effects and achieve better therapeutic effects. This not only provides new possibilities for drug-loaded nanofibers but also brings new hope for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Yangqi Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
29
|
The Key Elements for Biomolecules to Biomaterials and to Bioapplications. Biomolecules 2022; 12:biom12091234. [PMID: 36139073 PMCID: PMC9496090 DOI: 10.3390/biom12091234] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 02/06/2023] Open
|
30
|
Jiang W, Zhao P, Song W, Wang M, Yu DG. Electrospun Zein/Polyoxyethylene Core-Sheath Ultrathin Fibers and Their Antibacterial Food Packaging Applications. Biomolecules 2022; 12:1110. [PMID: 36009003 PMCID: PMC9405609 DOI: 10.3390/biom12081110] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
The purpose of this work is to develop a novel ultrathin fibrous membrane with a core-sheath structure as antibacterial food packaging film. Coaxial electrospinning was exploited to create the core-sheath structure, by which the delivery regulation of the active substance was achieved. Resveratrol (RE) and silver nanoparticles (AgNPs) were loaded into electrospun zein/polyethylene oxide ultrathin fibers to ensure a synergistic antibacterial performance. Under the assessments of a scanning electron microscope and transmission electron microscope, the ultrathin fiber was demonstrated to have a fine linear morphology, smooth surface and obvious core-sheath structure. X-ray diffraction and Fourier transform infrared analyses showed that RE and AgNPs coexisted in the ultrathin fibers and had good compatibility with the polymeric matrices. The water contact angle experiments were conducted to evaluate the hydrophilicity and hygroscopicity of the fibers. In vitro dissolution tests revealed that RE was released in a sustained manner. In the antibacterial experiments against Staphylococcus aureus and Escherichia coli, the diameters of the inhibition zone of the fiber were 8.89 ± 0.09 mm and 7.26 ± 0.10 mm, respectively. Finally, cherry tomatoes were selected as the packaging object and packed with fiber films. In a practical application, the fiber films effectively reduced the bacteria and decreased the quality loss of cherry tomatoes, thereby prolonging the fresh-keeping period of cherry tomatoes to 12 days. Following the protocols reported here, many new food packaging films can be similarly developed in the future.
Collapse
Affiliation(s)
- Wenlai Jiang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Ping Zhao
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Wenliang Song
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
31
|
Wang H, Bao Y, Yang X, Lan X, Guo J, Pan Y, Huang W, Tang L, Luo Z, Zhou B, Yao J, Chen X. Study on Filtration Performance of PVDF/PUL Composite Air Filtration Membrane Based on Far-Field Electrospinning. Polymers (Basel) 2022; 14:3294. [PMID: 36015550 PMCID: PMC9414131 DOI: 10.3390/polym14163294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
At present, the situation of air pollution is still serious, and research on air filtration is still crucial. For the nanofiber air filtration membrane, the diameter, porosity, tensile strength, and hydrophilicity of the nanofiber will affect the filtration performance and stability. In this paper, based on the far-field electrospinning process and the performance effect mechanism of the stacked structure fiber membrane, nanofiber membrane was prepared by selecting the environmental protection, degradable and pollution-free natural polysaccharide biopolymer pullulan, and polyvinylidene fluoride polymer with strong hydrophobicity and high impact strength. By combining two kinds of fiber membranes with different fiber diameter and porosity, a three-layer composite nanofiber membrane with better hydrophobicity, higher tensile strength, smaller fiber diameter, and better filtration performance was prepared. Performance characterization showed that this three-layer composite nanofiber membrane had excellent air permeability and filtration efficiency, and the filtration efficiency of particles above PM 2.5 reached 99.9%. This study also provides important reference values for the preparation of high-efficiency composite nanofiber filtration membrane.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiliang Bao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiuding Yang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingzi Lan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Guo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiliang Pan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Foshan Nanofiberlabs Co., Ltd., Foshan 528225, China
| | - Weimin Huang
- School of Mechanics and Astronautics, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Linjun Tang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifeng Luo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Bei Zhou
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingsong Yao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
33
|
Huang C, Xu X, Fu J, Yu DG, Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers (Basel) 2022; 14:3266. [PMID: 36015523 PMCID: PMC9415690 DOI: 10.3390/polym14163266] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge role in it. Electrospinning technology is simple to operate. Electrospun nanofibers have a high specific surface area, high porosity, high oxygen permeability, and excellent mechanical properties, which show great utilization value in the manufacture of wound dressings. As one of the most popular reactive and functional synthetic polymers, polyacrylonitrile (PAN) is frequently explored to create nanofibers for a wide variety of applications. In recent years, researchers have invested in the application of PAN nanofibers in wound dressings. Research on spun nanofibers is reviewed, and future development directions and prospects of electrospun PAN nanofibers for wound dressings are proposed.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhao Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
34
|
Electrospun Core–Sheath Nanofibers with Variable Shell Thickness for Modifying Curcumin Release to Achieve a Better Antibacterial Performance. Biomolecules 2022; 12:biom12081057. [PMID: 36008951 PMCID: PMC9406017 DOI: 10.3390/biom12081057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The inefficient use of water-insoluble drugs is a major challenge in drug delivery systems. Core–sheath fibers with various shell thicknesses based on cellulose acetate (CA) were prepared by the modified triaxial electrospinning for the controlled and sustained release of the water-insoluble Chinese herbal active ingredient curcumin. The superficial morphology and internal structure of core–sheath fibers were optimized by increasing the flow rate of the middle working fluid. Although the prepared fibers were hydrophobic initially, the core–sheath structure endowed fibers with better water retention property than monolithic fibers. Core–sheath fibers had flatter sustained-release profiles than monolithic fibers, especially for thick shell layers, which had almost zero-order release for almost 60 h. The shell thickness and sustained release of drugs brought about a good antibacterial effect to materials. The control of flow rate during fiber preparation is directly related to the shell thickness of core–sheath fibers, and the shell thickness directly affects the controlled release of drugs. The fiber preparation strategy for the precise control of core–sheath structure in this work has remarkable potential for modifying water-insoluble drug release and improving its antibacterial performance.
Collapse
|
35
|
Microbial Poly-γ-Glutamic Acid (γ-PGA) as an Effective Tooth Enamel Protectant. Polymers (Basel) 2022; 14:polym14142937. [PMID: 35890712 PMCID: PMC9317725 DOI: 10.3390/polym14142937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a bio-derived water-soluble, edible, non-immunogenic nylon-like polymer with the biochemical characteristics of a polypeptide. This Bacillus-derived material has great potential for a wide range of applications, from bioremediation to tunable drug delivery systems. In the context of oral care, γ-PGA holds great promise in enamel demineralisation prevention. The salivary protein statherin has previously been shown to protect tooth enamel from acid dissolution and act as a reservoir for free calcium ions within oral cavities. Its superb enamel-binding capacity is attributed to the L-glutamic acid residues of this 5380 Da protein. In this study, γ-PGA was successfully synthesised from Bacillus subtilis natto cultivated on supplemented algae media and standard commercial media. The polymers obtained were tested for their potential to inhibit demineralisation of hydroxyapatite (HAp) when exposed to caries simulating acidic conditions. Formulations presenting 0.1, 0.25, 0.5, 0.75, 1, 2, 3 and 4% (w/v) γ-PGA concentration were assessed to determine the optimal conditions. Our data suggests that both the concentration and the molar mass of the γ-PGA were significant in enamel protection (p = 0.028 and p < 0.01 respectively). Ion Selective Electrode, combined with Fourier Transform Infra-Red studies, were employed to quantify enamel protection capacity of γ-PGA. All concentrations tested showed an inhibitory effect on the dissolution rate of calcium ions from hydroxyapatite, with 1% (wt) and 2% (wt) concentrations being the most effective. The impact of the average molar mass (M) on enamel dissolution was also investigated by employing commercial 66 kDa, 166 kDa, 440 kDa and 520 kDa γ-PGA fractions. All γ-PGA solutions adhered to the surface of HAp with evidence that this remained after 60 min of continuous acidic challenge. Inductively Coupled Plasma analysis showed a significant abundance of calcium ions associated with γ-PGA, which suggests that this material could also act as a responsive calcium delivery system. We have concluded that all γ-PGA samples tested (commercial and algae derived) display enamel protection capacity regardless of their concentration or average molar mass. However, we believe that γ-PGA D/L ratios might affect the binding more than its molar mass.
Collapse
|