1
|
Cecchini M, Corringer PJ, Changeux JP. The Nicotinic Acetylcholine Receptor and Its Pentameric Homologs: Toward an Allosteric Mechanism of Signal Transduction at the Atomic Level. Annu Rev Biochem 2024; 93:339-366. [PMID: 38346274 DOI: 10.1146/annurev-biochem-030122-033116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The nicotinic acetylcholine receptor has served, since its biochemical identification in the 1970s, as a model of an allosteric ligand-gated ion channel mediating signal transition at the synapse. In recent years, the application of X-ray crystallography and high-resolution cryo-electron microscopy, together with molecular dynamic simulations of nicotinic receptors and homologs, have opened a new era in the understanding of channel gating by the neurotransmitter. They reveal, at atomic resolution, the diversity and flexibility of the multiple ligand-binding sites, including recently discovered allosteric modulatory sites distinct from the neurotransmitter orthosteric site, and the conformational dynamics of the activation process as a molecular switch linking these multiple sites. The model emerging from these studies paves the way for a new pharmacology based, first, upon the occurrence of an original mode of indirect allosteric modulation, distinct from a steric competition for a single and rigid binding site, and second, the design of drugs that specifically interact with privileged conformations of the receptor such as agonists, antagonists, and desensitizers. Research on nicotinic receptors is still at the forefront of understanding the mode of action of drugs on the nervous system.
Collapse
Affiliation(s)
- Marco Cecchini
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France
| | - Jean-Pierre Changeux
- Department of Neuroscience, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France;
| |
Collapse
|
2
|
Ananchenko A, Gao RY, Dehez F, Baenziger JE. State-dependent binding of cholesterol and an anionic lipid to the muscle-type Torpedo nicotinic acetylcholine receptor. Commun Biol 2024; 7:437. [PMID: 38600247 PMCID: PMC11006840 DOI: 10.1038/s42003-024-06106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
The ability of the Torpedo nicotinic acetylcholine receptor (nAChR) to undergo agonist-induced conformational transitions requires the presence of cholesterol and/or anionic lipids. Here we use recently solved structures along with multiscale molecular dynamics simulations to examine lipid binding to the nAChR in bilayers that have defined effects on nAChR function. We examine how phosphatidic acid and cholesterol, lipids that support conformational transitions, individually compete for binding with phosphatidylcholine, a lipid that does not. We also examine how the two lipids work synergistically to stabilize an agonist-responsive nAChR. We identify rapidly exchanging lipid binding sites, including both phospholipid sites with a high affinity for phosphatidic acid and promiscuous cholesterol binding sites in the grooves between adjacent transmembrane α-helices. A high affinity cholesterol site is confirmed in the inner leaflet framed by a key tryptophan residue on the MX α-helix. Our data provide insight into the dynamic nature of lipid-nAChR interactions and set the stage for a detailed understanding of the mechanisms by which lipids facilitate nAChR function at the neuromuscular junction.
Collapse
Affiliation(s)
- Anna Ananchenko
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Rui Yan Gao
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - François Dehez
- CNRS, LPCT, Université de Lorraine, F-54000 Nancy, France.
| | - John E Baenziger
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Sandberg JW, Santiago-McRae E, Ennis J, Brannigan G. The density-threshold affinity: Calculating lipid binding affinities from unbiased coarse-grained molecular dynamics simulations. Methods Enzymol 2024; 701:47-82. [PMID: 39025580 DOI: 10.1016/bs.mie.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Many membrane proteins are sensitive to their local lipid environment. As structural methods for membrane proteins have improved, there is growing evidence of direct, specific binding of lipids to protein surfaces. Unfortunately the workhorse of understanding protein-small molecule interactions, the binding affinity for a given site, is experimentally inaccessible for these systems. Coarse-grained molecular dynamics simulations can be used to bridge this gap, and are relatively straightforward to learn. Such simulations allow users to observe spontaneous binding of lipids to membrane proteins and quantify localized densities of individual lipids or lipid fragments. In this chapter we outline a protocol for extracting binding affinities from these localized distributions, known as the "density threshold affinity." The density threshold affinity uses an adaptive and flexible definition of site occupancy that alleviates the need to distinguish between "bound'' lipids and bulk lipids that are simply diffusing through the site. Furthermore, the method allows "bead-level" resolution that is suitable for the case where lipids share binding sites, and circumvents ambiguities about a relevant reference state. This approach provides a convenient and straightforward method for comparing affinities of a single lipid species for multiple sites, multiple lipids for a single site, and/or a single lipid species modeled using multiple forcefields.
Collapse
Affiliation(s)
- Jesse W Sandberg
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Ezry Santiago-McRae
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Jahmal Ennis
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States; Department of Physics, Rutgers University, Camden, NJ, United States.
| |
Collapse
|
4
|
Cowgill J, Fan C, Haloi N, Tobiasson V, Zhuang Y, Howard RJ, Lindahl E. Structure and dynamics of differential ligand binding in the human ρ-type GABA A receptor. Neuron 2023; 111:3450-3464.e5. [PMID: 37659407 DOI: 10.1016/j.neuron.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/04/2023]
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) drives critical inhibitory processes in and beyond the nervous system, partly via ionotropic type-A receptors (GABAARs). Pharmacological properties of ρ-type GABAARs are particularly distinctive, yet the structural basis for their specialization remains unclear. Here, we present cryo-EM structures of a lipid-embedded human ρ1 GABAAR, including a partial intracellular domain, under apo, inhibited, and desensitized conditions. An apparent resting state, determined first in the absence of modulators, was recapitulated with the specific inhibitor (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid and blocker picrotoxin and provided a rationale for bicuculline insensitivity. Comparative structures, mutant recordings, and molecular simulations with and without GABA further explained the sensitized but slower activation of ρ1 relative to canonical subtypes. Combining GABA with picrotoxin also captured an apparent uncoupled intermediate state. This work reveals structural mechanisms of gating and modulation with applications to ρ-specific pharmaceutical design and to our biophysical understanding of ligand-gated ion channels.
Collapse
Affiliation(s)
- John Cowgill
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Chen Fan
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Nandan Haloi
- Department of Applied Physics, SciLifeLab, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Victor Tobiasson
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden.
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden; Department of Applied Physics, SciLifeLab, KTH Royal Institute of Technology, 17121 Solna, Sweden.
| |
Collapse
|
5
|
Panda A, Brown C, Gupta K. Studying Membrane Protein-Lipid Specificity through Direct Native Mass Spectrometric Analysis from Tunable Proteoliposomes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1917-1927. [PMID: 37432128 PMCID: PMC10932607 DOI: 10.1021/jasms.3c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Native mass spectrometry (nMS) has emerged as a key analytical tool to study the organizational states of proteins and their complexes with both endogenous and exogenous ligands. Specifically, for membrane proteins, it provides a key analytical dimension to determine the identity of bound lipids and to decipher their effects on the observed structural assembly. We recently developed an approach to study membrane proteins directly from intact and tunable lipid membranes where both the biophysical properties of the membrane and its lipid compositions can be customized. Extending this, we use our liposome-nMS platform to decipher the lipid specificity of membrane proteins through their multiorganelle trafficking pathways. To demonstrate this, we used VAMP2 and reconstituted it in the endoplasmic reticulum (ER), Golgi, synaptic vesicle (SV), and plasma membrane (PM) mimicking liposomes. By directly studying VAMP2 from these customized liposomes, we show how the same transmembrane protein can bind to different sets of lipids in different organellar-mimicking membranes. Considering that the cellular trafficking pathway of most eukaryotic integral membrane proteins involves residence in multiple organellar membranes, this study highlights how the lipid-specificity of the same integral membrane protein may change depending on the membrane context. Further, leveraging the capability of the platform to study membrane proteins from liposomes with curated biophysical properties, we show how we can disentangle chemical versus biophysical properties, of individual lipids in regulating membrane protein assembly.
Collapse
Affiliation(s)
- Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Caroline Brown
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Hu Z, Zheng X, Yang J. Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Commun 2023; 14:4284. [PMID: 37463923 DOI: 10.1038/s41467-023-39971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels transduce chemical signals into electrical signals in sensory receptors and neurons. They are activated by cGMP or cAMP, which bind to the cyclic nucleotide-binding domain (CNBD) to open a gate located 50-60 Å away in the central cavity. Structures of closed and open vertebrate CNG channels have been solved, but the conformational landscape of this allosteric gating remains to be elucidated and enriched. Here, we report structures of the cGMP-activated human cone photoreceptor CNGA3/CNGB3 channel in closed, intermediate, pre-open and open states in detergent or lipid nanodisc, all with fully bound cGMP. The pre-open and open states are obtained only in the lipid nanodisc, suggesting a critical role of lipids in tuning the energetic landscape of CNGA3/CNGB3 activation. The different states exhibit subunit-unique, incremental and distinct conformational rearrangements that originate in the CNBD, propagate through the gating ring to the transmembrane domain, and gradually open the S6 cavity gate. Our work illustrates a spatial conformational-change wave of allosteric gating of a vertebrate CNG channel by its natural ligand and provides an expanded framework for studying CNG properties and channelopathy.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
7
|
Barrantes FJ. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol Res 2023; 190:106729. [PMID: 36931540 DOI: 10.1016/j.phrs.2023.106729] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a transmembrane protein that mediates fast intercellular communication in response to the endogenous neurotransmitter acetylcholine. It is the best characterized and archetypal molecule in the superfamily of pentameric ligand-gated ion channels (pLGICs). As a typical transmembrane macromolecule, it interacts extensively with its vicinal lipid microenvironment. Experimental evidence provides a wealth of information on receptor-lipid crosstalk: the nAChR exerts influence on its immediate membrane environment and conversely, the lipid moiety modulates ligand binding, affinity state transitions and gating of ion translocation functions of the receptor protein. Recent cryogenic electron microscopy (cryo-EM) studies have unveiled the occurrence of sites for phospholipids and cholesterol on the lipid-exposed regions of neuronal and electroplax nAChRs, confirming early spectroscopic and affinity labeling studies demonstrating the close contact of lipid molecules with the receptor transmembrane segments. This new data provides structural support to the postulated "lipid sensor" ability displayed by the outer ring of M4 transmembrane domains and their modulatory role on nAChR function, as we postulated a decade ago. Borrowing from the best characterized nAChR, the electroplax (muscle-type) receptor, and exploiting new structural information on the neuronal nAChR, it is now possible to achieve an improved depiction of these sites. In combination with site-directed mutagenesis, single-channel electrophysiology, and molecular dynamics studies, the new structural information delivers a more comprehensive portrayal of these lipid-sensitive loci, providing mechanistic explanations for their ability to modulate nAChR properties and raising the possibility of targetting them in disease.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA) - Argentine Scientific & Technol. Research Council (CONICET), Av. Alicia Moreau de Justo 1600, C1107AAZ Buenos Aires, Argentina.
| |
Collapse
|
8
|
Ananchenko A, Musgaard M. Multiscale molecular dynamics simulations predict arachidonic acid binding sites in human ASIC1a and ASIC3 transmembrane domains. J Gen Physiol 2023; 155:213797. [PMID: 36625864 PMCID: PMC9836442 DOI: 10.1085/jgp.202213259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Acid-sensing ion channels (ASICs) play important roles in inflammatory pathways by conducting ions across the neuronal membrane in response to proton binding under acidic conditions. Recent studies have shown that ASICs can be modulated by arachidonic acid (AA), and, in the case of the ASIC3 subtype, even activated by AA at physiological pH. However, the mechanism by which these fatty acids act on the channel is still unknown. Here, we have used multiscale molecular dynamics simulations to predict a putative, general binding region of AA to models of the human ASIC protein. We have identified, in agreement with recent studies, residues in the outer leaflet transmembrane region which interact with AA. In addition, despite their similar modulation, we observe subtle differences in the AA interaction pattern between human ASIC1a and human ASIC3, which can be reversed by mutating three key residues at the outer leaflet portion of TM1. We further probed interactions with these residues in hASIC3 using atomistic simulations and identified possible AA coordinating interactions; salt bridge interactions of AA with R65hASIC3 and R68hASIC3 and AA tail interactions with the Y58hASIC3 aromatic ring. We have shown that longer fatty acid tails with more double bonds have increased relative occupancy in this region of the channel, a finding supported by recent functional studies. We further proposed that the modulatory effect of AA on ASIC does not result from changes in local membrane curvature. Rather, we speculate that it may occur through structural changes to the ion channel upon AA binding.
Collapse
Affiliation(s)
- Anna Ananchenko
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
9
|
Petroff JT, Dietzen NM, Santiago-McRae E, Deng B, Washington MS, Chen LJ, Trent Moreland K, Deng Z, Rau M, Fitzpatrick JAJ, Yuan P, Joseph TT, Hénin J, Brannigan G, Cheng WWL. Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation. Nat Commun 2022; 13:7017. [PMID: 36385237 PMCID: PMC9668969 DOI: 10.1038/s41467-022-34813-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate synaptic transmission and are sensitive to their lipid environment. The mechanism of phospholipid modulation of any pLGIC is not well understood. We demonstrate that the model pLGIC, ELIC (Erwinia ligand-gated ion channel), is positively modulated by the anionic phospholipid, phosphatidylglycerol, from the outer leaflet of the membrane. To explore the mechanism of phosphatidylglycerol modulation, we determine a structure of ELIC in an open-channel conformation. The structure shows a bound phospholipid in an outer leaflet site, and structural changes in the phospholipid binding site unique to the open-channel. In combination with streamlined alchemical free energy perturbation calculations and functional measurements in asymmetric liposomes, the data support a mechanism by which an anionic phospholipid stabilizes the activated, open-channel state of a pLGIC by specific, state-dependent binding to this site.
Collapse
Affiliation(s)
- John T Petroff
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Noah M Dietzen
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ezry Santiago-McRae
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Brett Deng
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maya S Washington
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lawrence J Chen
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - K Trent Moreland
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Zengqin Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael Rau
- Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Thomas T Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, CNRS UPR 9080, Paris, France
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
- Department of Physics, Rutgers University, Camden, NJ, USA
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|