1
|
Georgescu A. Understanding the Key Determinants of Cardiovascular and Metabolic Disease Progression to Develop Effective Therapeutic Strategies. Biomolecules 2024; 14:1281. [PMID: 39456214 PMCID: PMC11505940 DOI: 10.3390/biom14101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Cardiovascular disease (CVD) is a general term that is used to describe a range of conditions affecting the cardiovascular system [...].
Collapse
Affiliation(s)
- Adriana Georgescu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| |
Collapse
|
2
|
Abudurexiti M, Abuduhalike R, Naman T, Wupuer N, Duan D, Keranmu M, Mahemuti A. Integrated proteomic and metabolomic profiling reveals novel insights on the inflammation and immune response in HFpEF. BMC Genomics 2024; 25:676. [PMID: 38977985 PMCID: PMC11229282 DOI: 10.1186/s12864-024-10575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The precise mechanisms leading to the development of heart failure with preserved ejection fraction (HFpEF) remain incompletely defined. In this study, an integrative approach utilizing untargeted proteomics and metabolomics was employed to delineate the altered proteomic and metabolomic profiles in patients with HFpEF compared to healthy controls. MATERIALS AND METHODS Data were collected from a prospective cohort consisting of 30 HFpEF participants and 30 healthy controls, matched by gender and age. plasma samples were analyzed by multi-omics platforms. The quantification of plasma proteins and metabolites was performed using data-independent acquisition-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), respectively. Additionally, Proteomic and metabolomic results were analyzed separately and integrated using correlation and pathway analysis. This was followed by the execution of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment studies to elucidate the biological relevance of the observed results. RESULTS A total of 46 significantly differentially expressed proteins (DEPs) and 102 differentially expressed metabolites (DEMs) were identified. Then, GO and KEGG pathway enrichment analyses were performed by DEPs and DEMs. Integrated analysis of proteomics and metabolomics has revealed Tuberculosis and African trypanosomiasis pathways that are significantly enriched and the DEPs and DEMs enriched within them, are associated with inflammation and immune response. CONCLUSIONS Integrated proteomic and metabolomic analyses revealed distinct inflammatory and immune response pathways in HFpEF, highlighting novel therapeutic avenues.
Collapse
Affiliation(s)
- Muyashaer Abudurexiti
- Department of Heart Failure, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Refukaiti Abuduhalike
- Department of Heart Failure, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Tuersunjiang Naman
- Department of Heart Failure, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Nuerdun Wupuer
- Department of Heart Failure, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Dongqin Duan
- Department of Heart Failure, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Mayire Keranmu
- Department of Heart Failure, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Ailiman Mahemuti
- Department of Heart Failure, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
3
|
Ferro F, Spelat R, Pandit A, Martin-Ventura JL, Rabinovich GA, Contessotto P. Glycosylation of blood cells during the onset and progression of atherosclerosis and myocardial infarction. Trends Mol Med 2024; 30:178-196. [PMID: 38142190 DOI: 10.1016/j.molmed.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
Protein glycosylation controls cell-cell and cell-extracellular matrix (ECM) communication in immune, vascular, and inflammatory processes, underlining the critical role of this process in the identification of disease biomarkers and the design of novel therapies. Emerging evidence highlights the critical role of blood cell glycosylation in the pathophysiology of atherosclerosis (ATH) and myocardial infarction (MI). Here, we review the role of glycosylation in the interplay between blood cells, particularly erythrocytes, and endothelial cells (ECs), highlighting the involvement of this critical post/cotranslational modification in settings of cardiovascular disease (CVD). Importantly, we focus on emerging preclinical studies and clinical trials based on glycan-targeted drugs to validate their therapeutic potential. These findings may help establish new trends in preventive medicine and delineate novel targeted therapies in CVD.
Collapse
Affiliation(s)
- Federico Ferro
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Renza Spelat
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - José L Martin-Ventura
- Vascular Research Laboratory, IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Paolo Contessotto
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
4
|
Gao S, Liu XP, Li TT, Chen L, Feng YP, Wang YK, Yin YJ, Little PJ, Wu XQ, Xu SW, Jiang XD. Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 2024; 45:23-35. [PMID: 37644131 PMCID: PMC10770177 DOI: 10.1038/s41401-023-01152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.
Collapse
Affiliation(s)
- Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xue-Ping Liu
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Ting-Ting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Li Chen
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yi-Ping Feng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yu-Kun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Jun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
| | - Xiao-Qian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Suo-Wen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xu-Dong Jiang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
| |
Collapse
|
5
|
Ferro F, Azzolin F, Spelat R, Bevilacqua L, Maglione M. Considering the Value of 3D Cultures for Enhancing the Understanding of Adhesion, Proliferation, and Osteogenesis on Titanium Dental Implants. Biomolecules 2023; 13:1048. [PMID: 37509084 PMCID: PMC10377630 DOI: 10.3390/biom13071048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Individuals with pathologic conditions and restorative deficiencies might benefit from a combinatorial approach encompassing stem cells and dental implants; however, due to the various surface textures and coatings, the influence of titanium dental implants on cells exhibits extensive, wide variations. Three-dimensional (3D) cultures of stem cells on whole dental implants are superior in testing implant properties and were used to examine their capabilities thoroughly. MATERIALS AND METHODS The surface micro-topography of five titanium dental implants manufactured by sandblasting with titanium, aluminum, corundum, or laser sintered and laser machined was compared in this study. After characterization, including particle size distribution and roughness, the adhesion, proliferation, and viability of adipose-derived stem cells (ADSCs) cultured on the whole-body implants were tested at three time points (one to seven days). Finally, the capacity of the implant to induce ADSCs' spontaneous osteoblastic differentiation was examined at the same time points, assessing the gene expression of collagen type 1 (coll-I), osteonectin (osn), alkaline phosphatase (alp), and osteocalcin (osc). RESULTS Laser-treated (Laser Mach and Laser Sint) implants exhibited the highest adhesion degree; however, limited proliferation was observed, except for Laser Sint implants, while viability differences were seen throughout the three time points, except for Ti Blast implants. Sandblasted surfaces (Al Blast, Cor Blast, and Ti Blast) outpaced the laser-treated ones, inducing higher amounts of coll-I, osn, and alp, but not osc. Among the sandblasted surfaces, Ti Blast showed moderate roughness and the highest superficial texture density, favoring the most significant spontaneous differentiation relative to all the other implant surfaces. CONCLUSIONS The results indicate that 3D cultures of stem cells on whole-body titanium dental implants is a practical and physiologically appropriate way to test the biological characteristics of the implants, revealing peculiar differences in ADSCs' adhesion, proliferation, and activity toward osteogenic commitment in the absence of specific osteoinductive cues. In addition, the 3D method would allow researchers to test various implant surfaces more thoroughly. Integrating with preconditioned stem cells would inspire a more substantial combinatorial approach to promote a quicker recovery for patients with restorative impairments.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Federico Azzolin
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Lorenzo Bevilacqua
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Michele Maglione
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| |
Collapse
|
6
|
Mutithu DW, Kirwan JA, Adeola HA, Aremu OO, Lumngwena EN, Wiesner L, Skatulla S, Naidoo R, Ntusi NAB. High-Throughput Metabolomics Applications in Pathogenesis and Diagnosis of Valvular Heart Disease. Rev Cardiovasc Med 2023; 24:169. [PMID: 39077521 PMCID: PMC11264134 DOI: 10.31083/j.rcm2406169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 07/31/2024] Open
Abstract
High-throughput metabolomics techniques are a useful tool to understand many disease conditions including cardiovascular disease such as valvular heart disease(s) (VHD). VHD involves damage to heart valves, mostly presenting as stenosis, regurgitation or prolapse and can be classified into degenerative, rheumatic, congenital, or prosthetic valve disease. Gaps remain in our understanding of the pathogenesis of the common VHD. It is now fitting to place into perspective the contribution of metabolomics in the mechanism of development, diagnosis, and prognosis of VHD. A structured search for metabolomics studies centred on human VHD was undertaken. Biomarkers associated with the pathogenesis of bicuspid aortic valve disease, mitral valve disease, rheumatic heart disease, and degenerative aortic valve stenosis are reviewed and discussed. In addition, metabolic biomarkers reported to prognosticate patient outcomes of post-valve repair or replacement are highlighted. Finally, we also review the pitfalls and limitations to consider when designing metabolomics studies, especially from a clinician's viewpoint. In the future, reliable and simple metabolic biomarker(s) may supplement the existing diagnostic tools in the early diagnosis of VHD.
Collapse
Affiliation(s)
- Daniel W. Mutithu
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, 7925 Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, 7501 Cape Town, South Africa
| | - Jennifer A. Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Henry A. Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, University of Cape Town, 7925 Cape Town, South Africa
| | - Olukayode O. Aremu
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, 7925 Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, 7501 Cape Town, South Africa
| | - Evelyn N. Lumngwena
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, 7925 Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, 7501 Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IIDM), University of Cape Town, 7925 Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, 7925 Cape Town, South Africa
| | - Sebastian Skatulla
- Computational Continuum Mechanics Research Group, Department of Civil Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, 7925 Cape Town, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, and National Health Laboratory Services, 7925 Cape Town, South Africa
| | - Ntobeko A. B. Ntusi
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, 7925 Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, 7501 Cape Town, South Africa
- Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| |
Collapse
|
7
|
Reproducing extracellular matrix adverse remodelling of non-ST myocardial infarction in a large animal model. Nat Commun 2023; 14:995. [PMID: 36813782 PMCID: PMC9945840 DOI: 10.1038/s41467-023-36350-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
The rising incidence of non-ST-segment elevation myocardial infarction (NSTEMI) and associated long-term high mortality constitutes an urgent clinical issue. Unfortunately, the study of possible interventions to treat this pathology lacks a reproducible pre-clinical model. Indeed, currently adopted small and large animal models of MI mimic only full-thickness, ST-segment-elevation (STEMI) infarcts, and hence cater only for an investigation into therapeutics and interventions directed at this subset of MI. Thus, we develop an ovine model of NSTEMI by ligating the myocardial muscle at precise intervals parallel to the left anterior descending coronary artery. Upon histological and functional investigation to validate the proposed model and comparison with STEMI full ligation model, RNA-seq and proteomics show the distinctive features of post-NSTEMI tissue remodelling. Transcriptome and proteome-derived pathway analyses at acute (7 days) and late (28 days) post-NSTEMI pinpoint specific alterations in cardiac post-ischaemic extracellular matrix. Together with the rise of well-known markers of inflammation and fibrosis, NSTEMI ischaemic regions show distinctive patterns of complex galactosylated and sialylated N-glycans in cellular membranes and extracellular matrix. Identifying such changes in molecular moieties accessible to infusible and intra-myocardial injectable drugs sheds light on developing targeted pharmacological solutions to contrast adverse fibrotic remodelling.
Collapse
|
8
|
Palazzuoli A, Tramonte F, Beltrami M. Laboratory and Metabolomic Fingerprint in Heart Failure with Preserved Ejection Fraction: From Clinical Classification to Biomarker Signature. Biomolecules 2023; 13:173. [PMID: 36671558 PMCID: PMC9855377 DOI: 10.3390/biom13010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a poorly characterized syndrome with many unknown aspects related to different patient profiles, various associated risk factors and a wide range of aetiologies. It comprises several pathophysiological pathways, such as endothelial dysfunction, myocardial fibrosis, extracellular matrix deposition and intense inflammatory system activation. Until now, HFpEF has only been described with regard to clinical features and its most commonly associated risk factors, disregarding all biological mechanisms responsible for cardiovascular deteriorations. Recently, innovations in laboratory and metabolomic findings have shown that HFpEF appears to be strictly related to specific cells and molecular mechanisms' dysregulation. Indeed, some biomarkers are efficient in early identification of these processes, adding new insights into diagnosis and risk stratification. Moreover, recent advances in intermediate metabolites provide relevant information on intrinsic cellular and energetic substrate alterations. Therefore, a systematic combination of clinical imaging and laboratory findings may lead to a 'precision medicine' approach providing prognostic and therapeutic advantages. The current review reports traditional and emerging biomarkers in HFpEF and it purposes a new diagnostic approach based on integrative information achieved from risk factor burden, hemodynamic dysfunction and biomarkers' signature partnership.
Collapse
Affiliation(s)
- Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, Le Scotte Hospital, University of Siena, 53100 Siena, Italy
| | - Francesco Tramonte
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, Le Scotte Hospital, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
9
|
Berezin AE. Heart failure with recovered ejection fraction: The role of HbA1c level in hospitalized heart failure patients with type 2 diabetes. Int J Cardiol 2023; 370:327-329. [PMID: 36272570 DOI: 10.1016/j.ijcard.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
10
|
Spelat R, Ferro F, Contessotto P, Aljaabary A, Martin-Saldaña S, Jin C, Karlsson NG, Grealy M, Hilscher MM, Magni F, Chinello C, Kilcoyne M, Pandit A. Metabolic reprogramming and membrane glycan remodeling as potential drivers of zebrafish heart regeneration. Commun Biol 2022; 5:1365. [PMID: 36509839 PMCID: PMC9744865 DOI: 10.1038/s42003-022-04328-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
The ability of the zebrafish heart to regenerate following injury makes it a valuable model to deduce why this capability in mammals is limited to early neonatal stages. Although metabolic reprogramming and glycosylation remodeling have emerged as key aspects in many biological processes, how they may trigger a cardiac regenerative response in zebrafish is still a crucial question. Here, by using an up-to-date panel of transcriptomic, proteomic and glycomic approaches, we identify a metabolic switch from mitochondrial oxidative phosphorylation to glycolysis associated with membrane glycosylation remodeling during heart regeneration. Importantly, we establish the N- and O-linked glycan structural repertoire of the regenerating zebrafish heart, and link alterations in both sialylation and high mannose structures across the phases of regeneration. Our results show that metabolic reprogramming and glycan structural remodeling are potential drivers of tissue regeneration after cardiac injury, providing the biological rationale to develop novel therapeutics to elicit heart regeneration in mammals.
Collapse
Affiliation(s)
- Renza Spelat
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland ,grid.5970.b0000 0004 1762 9868Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Federico Ferro
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland ,grid.5133.40000 0001 1941 4308Department of Medical Surgery and Health Science, University of Trieste, Trieste, Italy
| | - Paolo Contessotto
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland ,grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Amal Aljaabary
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Sergio Martin-Saldaña
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Chunsheng Jin
- grid.8761.80000 0000 9919 9582Department of Medical Biochemistry, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G. Karlsson
- grid.8761.80000 0000 9919 9582Department of Medical Biochemistry, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maura Grealy
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Markus M. Hilscher
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Fulvio Magni
- grid.7563.70000 0001 2174 1754Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Clizia Chinello
- grid.7563.70000 0001 2174 1754Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Michelle Kilcoyne
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland ,Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|