1
|
Yang Z, Li L, Meng Z, Wang M, Gao T, Li J, Zhu L, Cao Q. Constitutive expression of cucumber CsACS2 in Arabidopsis Thaliana disrupts anther dehiscence through ethylene signaling and DNA methylation pathways. PLANT CELL REPORTS 2024; 43:288. [PMID: 39570417 DOI: 10.1007/s00299-024-03374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
KEY MESSAGE Constitutive expression of cucumber CsACS2 in Arabidopsis disrupts anther dehiscence and male fertility via ethylene signaling and DNA methylation, revealing new avenues for enhancing crop reproductive traits. The cucumber gene CsACS2, encoding ACC (1-aminocyclopropane-1-carboxylic acid) synthase, plays a pivotal role in ethylene biosynthesis and sex determination. This study investigates the effects of constitutive CsACS2 expression in Arabidopsis thaliana on anther development and male fertility. Transgenic Arabidopsis plants overexpressing CsACS2 exhibited male sterility due to inhibited anther dehiscence, which was linked to suppressed secondary cell wall thickening. RNA-Seq analysis revealed upregulation of ethylene signaling pathway genes and downregulation of secondary cell wall biosynthesis genes, with gene set enrichment analysis indicating the involvement of DNA methylation. Rescue experiments demonstrated that silver nitrate (AgNO₃) effectively restored fertility, while 5-azacytidine (5-az) partially restored it, highlighting the roles of ethylene signaling and DNA methylation in this process. Constitutive CsACS2 expression in Arabidopsis disrupts anther development through ethylene signaling and DNA methylation pathways, providing new insights into the role of ethylene in plant reproductive development and potential applications in crop improvement.
Collapse
Affiliation(s)
- Zonghui Yang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Libin Li
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhaojuan Meng
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mingqi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tian Gao
- Chengdu Agricultural Technology Promotion Station, Chengdu, 610000, China
| | - Jingjuan Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lixia Zhu
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qiwei Cao
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
2
|
Liu H, Li J, Xie L, Wu H, Han S, Hu L, Zhang F, Wang H. Quantitative proteomic analysis reveals hub proteins for high temperature-induced male sterility in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1426832. [PMID: 39290742 PMCID: PMC11405254 DOI: 10.3389/fpls.2024.1426832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
High-temperature (HT) stress can induce male sterility in wheat; however, the underlying mechanisms remain poorly understood. This study examined proteomic alterations across three developmental stages between normal and HT-induced male-sterile (HT-ms) anthers in wheat. Utilizing tandem mass tags-based proteomics, we identified 2532 differentially abundant proteins (DAPs): 27 in the tetrad stage, 157 in the binuclear stage, and 2348 in the trinuclear stage. Analyses through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways indicated significant enrichment of these DAPs in seven pathways, namely phenylpropanoid biosynthesis, flavonoid biosynthesis, sphingolipid metabolism, MAPK signaling pathway, starch and sucrose metabolism, response to heat, and response to reactive oxygen species (ROS). Our results indicated the downregulation of DAPs associated with phenylpropanoid biosynthesis and starch and sucrose metabolism, which aligns with anther indehiscence and the lack of starch in HT-ms anthers. By contrast, DAPs in the ROS pathway were upregulated, which aligns with excessive ROS accumulation in HT-ms anthers. Additionally, we conducted protein-protein interaction analysis for the DAPs of these pathways, identifying 15 hub DAPs. The abundance of these hub proteins was confirmed through qRT-PCR, assessing mRNA expression levels of the corresponding transcripts. Collectively, these results offer insights into the molecular mechanisms underlying HT-induced male sterility in wheat at the proteomic level, providing a valuable resource for further research in plant sexual reproduction.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinlei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Liuyong Xie
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Huanhuan Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Shuying Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Fuli Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hongxing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
3
|
Niu F, Liu Z, Liu Y, Bai J, Zhang T, Yuan S, Bai X, Zhao C, Zhang F, Sun H, Zhang L, Song X. Comparative transcriptome analysis reveals the impact of daily temperature difference on male sterility in photo-thermo-sensitive male sterile wheat. BMC Genomics 2024; 25:740. [PMID: 39080530 PMCID: PMC11290183 DOI: 10.1186/s12864-024-10627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Photo-thermo-sensitive male sterility (PTMS), which refers to the male sterility triggered by variations in photoperiod and temperature, is a crucial element in the wheat two-line hybrid system. The development of safe production and efficient propagation for male sterile lines holds utmost importance in two-line hybrid wheat. Under the stable photoperiod condition, PTMS is mainly induced by high or low temperatures in wheat, but the effect of daily temperature difference (DTD) on the fertility conversion of PTMS lines has not been reported. Here, three BS type PTMS lines including BS108, BS138, and BS366, as well as a control wheat variety J411 were used to analyze the correlation between fertility and DTD using differentially sowing tests, photo-thermo-control experiments, and transcriptome sequencing. RESULTS The differentially sowing tests suggested that the optimal sowing time for safe seed production of the three PTMS lines was from October 5th to 25th in Dengzhou, China. Under the condition of 12 h 12 °C, the PTMS lines were greatly affected by DTD and exhibited complete male sterility at a temperature difference of 15 °C. Furthermore, under different temperature difference conditions, a total of 20,677 differentially expressed genes (DEGs) were obtained using RNA sequencing. Moreover, through weighted gene co-expression network analysis (WGCNA) and KEGG enrichment analysis, the identified DEGs had a close association with "starch and sucrose metabolism", "phenylpropanoid biosynthesis", "MAPK signaling pathway-plant", "flavonoid biosynthesis", and "cutin, and suberine and wax biosynthesis". qRT-PCR analysis showed the expression levels of core genes related to KEGG pathways significantly decreased at a temperature difference of 15 ° C. Finally, we constructed a transcriptome mediated network of temperature difference affecting male sterility. CONCLUSIONS The findings provide important theoretical insights into the correlation between temperature difference and male sterility, providing guidance for the identification and selection of more secure and effective PTMS lines.
Collapse
Affiliation(s)
- Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zihan Liu
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yongjie Liu
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianfang Bai
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tianbao Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shaohua Yuan
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiucheng Bai
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changping Zhao
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fengting Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hui Sun
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Liping Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Jia W, Li X, Wang R, Duan Q, He J, Gao J, Wang J. Disruption of the Contents of Endogenous Hormones Cause Pollen Development Obstruction and Abortion in Male-Sterile Hybrid Lily Populations. PLANTS (BASEL, SWITZERLAND) 2023; 12:3804. [PMID: 38005701 PMCID: PMC10674860 DOI: 10.3390/plants12223804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Lilies are well-known flowers with large anthers and a high quantity of pollen that easily contaminates clothing and tepals. The anthers need to be artificially removed, leading to production problems. Cultivating male-sterile or pollen-free lilies could solve these problems. The key period of male sterility in a specific male-sterile hybrid lily population was determined through cytological observation. The contents of hormones, soluble sugar, soluble protein, and proline were determined by high-performance liquid chromatography, tandem mass spectrometry and colorimetry. Transcriptome sequencing was used to identify the genes with altered expression. The key period of male sterility was determined to be the microspore mother and tetrad stages. The hormone contents were abnormal in the sterile line compared with the fertile line. The indole-3-acetic acid (IAA) content was higher in the sterile line than in the fertile line at all stages, while the gibberellic acid 4 (GA4) content showed the opposite result. Abscisic acid (ABA) accumulated in the sterile line in both the microspore mother and tetrad stages, and the zeatin riboside (ZR) content in the sterile line increased at the microspore mother stage but decreased at the tetrad stage. The contents of soluble sugar, soluble protein and proline were higher in the fertile line than in the sterile line. Genes involved in auxin and ABA synthesis and signalling pathways were highly expressed in the male-sterile line. Our data suggested that abnormal contents of hormones in the microspore mother and tetrad stages resulted in pollen abortion in a male-sterile hybrid lily population, which indicated that the hormone balance in specific stages plays critical functions in pollen development in lilies.
Collapse
Affiliation(s)
- Wenjie Jia
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (W.J.); (R.W.)
- Flower Research Institute, Yunnan Academy of Agriculture Sciences, Kunming 650000, China; (X.L.); (Q.D.)
| | - Xiang Li
- Flower Research Institute, Yunnan Academy of Agriculture Sciences, Kunming 650000, China; (X.L.); (Q.D.)
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (W.J.); (R.W.)
| | - Qing Duan
- Flower Research Institute, Yunnan Academy of Agriculture Sciences, Kunming 650000, China; (X.L.); (Q.D.)
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (W.J.); (R.W.)
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (W.J.); (R.W.)
| | - Jihua Wang
- Flower Research Institute, Yunnan Academy of Agriculture Sciences, Kunming 650000, China; (X.L.); (Q.D.)
| |
Collapse
|
5
|
Khlestkina E, Shavrukov Y. Molecular-Genetic Basis of Plant Breeding. Biomolecules 2022; 12:biom12101392. [PMID: 36291600 PMCID: PMC9599551 DOI: 10.3390/biom12101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Elena Khlestkina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, 190000 St.-Petersburg, Russia
- Correspondence: (E.K.); (Y.S.)
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia
- Correspondence: (E.K.); (Y.S.)
| |
Collapse
|