1
|
Guo L, Zhou Y, Ding J, Xiong J, Zhu L, Amuti S, Zhang C, Du Z, Zhang X, Dong B, Alifu N. A near-infrared triggered multi-functional indocyanine green nanocomposite with NO gas release function inducing improved photothermal therapy. J Colloid Interface Sci 2025; 679:307-323. [PMID: 39454262 DOI: 10.1016/j.jcis.2024.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The integration of photothermal and near-infrared (NIR) imaging capabilities of indocyanine green (ICG) small molecules has attracted considerable attention in tumor diagnosis and treatment. However, the abnormal upregulation of cellular heat shock proteins (HSPs) induced by photothermal therapy (PTT) enhances cellular heat resistance, thereby severely affecting the efficacy of PTT. In this study, to address the impact of HSPs on the efficacy of PTT while obtaining high-quality NIR fluorescence imaging in the NIR region, we designed a targeted peptide@ICG nanofluorescent probe encapsulated in liposomes. The introduced cRGD targeting peptide not only possesses tumor-targeting capabilities but also features LA as the last amino acid in the targeting peptide, which can generate nitric oxide (NO) under reactive oxygen species (ROS) triggering. It can happen under 808 nm single-light source NIR light, and the guanidine group in the peptide decomposes and combines with singlet oxygen molecules to generate NO gas molecules, thereby exerting an elevated photothermal effect by inhibiting the expression of HSP70. In addition, the nanoprobes enable deep imaging and treatment of glioma in situ and can be combined with a laser speckle contrast imaging (LSCI) system for multimodal imaging. This composite probe demonstrates synergistic tumor therapeutic effects of photodynamic therapy (PDT), PTT, and gas therapy, offering a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Le Guo
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Yi Zhou
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China; Department of Biomedical Engineering, Zhongshan Medical College, ZhongShan University, Guangzhou 510000, China
| | - Jiayi Ding
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Jiabao Xiong
- Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Lijun Zhu
- Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Siyiti Amuti
- College of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China
| | - Chi Zhang
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Zhong Du
- Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi 830011, China.
| | - Biao Dong
- State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi 830011, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Nuernisha Alifu
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China; Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China; State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
2
|
Xu M, Wu Z, Li W, Xue L. Gp93 inhibits unfolded protein response-mediated c-Jun N-terminal kinase activation and cell invasion. J Cell Physiol 2024; 239:e31294. [PMID: 38922869 DOI: 10.1002/jcp.31294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 06/28/2024]
Abstract
In eukaryotes, Hsp90B1 serves as a vital chaperonin, facilitating the accurate folding of proteins. Interestingly, Hsp90B1 exhibits contrasting roles in the development of various types of cancers, although the underlying reasons for this duality remain enigmatic. Through the utilization of the Drosophila model, this study unveils the functional significance of Gp93, the Drosophila ortholog of Hsp90B1, which hitherto had limited reported developmental functions. Employing the Drosophila cell invasion model, we elucidated the pivotal role of Gp93 in regulating cell invasion and modulating c-Jun N-terminal kinase (JNK) activation. Furthermore, our investigation highlights the involvement of the unfolded protein response-associated IRE1/XBP1 pathway in governing Gp93 depletion-induced, JNK-dependent cell invasion. Collectively, these findings not only uncover a novel molecular function of Gp93 in Drosophila, but also underscore a significant consideration pertaining to the testing of Hsp90B1 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Meng Xu
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhihan Wu
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
3
|
Chen Z, Jia X, Cai Y, Song Y, Tong Y, Cheng S, Liu M. AUY922 improves sensitivity to sunitinib in clear cell renal cell carcinoma based on network pharmacology and in vitro experiments. Heliyon 2024; 10:e34834. [PMID: 39149033 PMCID: PMC11324986 DOI: 10.1016/j.heliyon.2024.e34834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Clear Cell Renal Cell Carcinoma (ccRCC), the most prevalent form of renal cell carcinoma (RCC), poses a significant threat to human health due to its rising morbidity and mortality rates. Sunitinib, a pivotal targeted drug for the treatment of ccRCC, presents a significant challenge due to the high susceptibility of ccRCC to resistance. HSP90 inhibitor AUY922 has demonstrated anti-tumor activity in a range of cancer types. However, its efficacy in combination with sunitinib for ccRCC treatment has not been evaluated. In this study, we employed bioinformatics, network pharmacology, and in vitro assays to verify that AUY922 inhibits cell viability, proliferation, and migration of ccRCC cell lines 786-O and ACHN, with IC50s of 91.86 μM for 786-O and 115.5 μM for ACHN. The effect of AUY922 enhancing the inhibitory effect of sunitinib on ccRCC was further confirmed. The CCK-8 assay demonstrated that the IC50 of sunitinib was reduced from 15.10 μM to 11.91 μM for 786-O and from 17.65 μM to 13.66 μM for ACHN, after the combined application of AUY922. The EdU assay and wound healing assay indicated that AUY922 augmented the inhibitory impact of sunitinib on the proliferation and migration of ccRCC cells. Western blot and RT-PCR analyses demonstrated that AUY922 increased the sensitivity of ccRCC cells to sunitinib by targeting the HIF-1α/VEGFA/VEGFR pathway. Our study represents the first investigation into the role and mechanism of AUY922 in enhancing the sensitivity of ccRCC to sunitinib. In conclusion, the findings indicate the potential for AUY922 to enhance the therapeutic efficacy of sunitinib and overcome sunitinib resistance in ccRCC.
Collapse
Affiliation(s)
- Zixuan Chen
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xing Jia
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuesong Cai
- College of Medicine, Yanbian University, Yanji, 133002, China
| | - Ya Song
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, China
| | - Yanjun Tong
- Department of Anesthesiology and Surgery, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Sheng Cheng
- Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Min Liu
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
4
|
Liu Y, Liang Z, Li Y, Zhu W, Feng B, Xu W, Fu J, Wei P, Luo M, Dong Z. Integrated transcriptome and microRNA analysis reveals molecular responses to high-temperature stress in the liver of American shad (Alosa sapidissima). BMC Genomics 2024; 25:656. [PMID: 38956484 PMCID: PMC11218383 DOI: 10.1186/s12864-024-10567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Fish reproduction, development and growth are directly affected by temperature, investigating the regulatory mechanisms behind high temperature stress is helpful to construct a finer molecular network. In this study, we systematically analyzed the transcriptome and miRNA information of American shad (Alosa sapidissima) liver tissues at different cultivation temperatures of 24 ℃ (Low), 27 ℃ (Mid) and 30 ℃ (High) based on a high-throughput sequencing platform. RESULTS The results showed that there were 1594 differentially expressed genes (DEGs) and 660 differentially expressed miRNAs (DEMs) in the LowLi vs. MidLi comparison group, 473 DEGs and 84 DEMs in the MidLi vs. HighLi group, 914 DEGs and 442 DEMs in the LowLi vs. HighLi group. These included some important genes and miRNAs such as calr, hsp90b1, hsp70, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p. The DEGs were mainly enriched in the protein folding, processing and export pathways of the endoplasmic reticulum; the target genes of the DEMs were mainly enriched in the focal adhesion pathway. Furthermore, the association analysis revealed that the key genes were mainly enriched in the metabolic pathway. Interestingly, we found a significant increase in the number of genes and miRNAs involved in the regulation of heat stress during the temperature change from 24 °C to 27 °C. In addition, we examined the tissue expression characteristics of some key genes and miRNAs by qPCR, and found that calr, hsp90b1 and dre-miR-125b-2-3p were significantly highly expressed in the liver at 27 ℃, while novel-m0481-5p, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p had the highest expression in the heart at 30℃. Finally, the quantitative expression trends of 10 randomly selected DEGs and 10 DEMs were consistent with the sequencing data, indicating the reliability of the results. CONCLUSIONS In summary, this study provides some fundamental data for subsequent in-depth research into the molecular regulatory mechanisms of A. sapidissima response to heat stress, and for the selective breeding of high temperature tolerant varieties.
Collapse
Affiliation(s)
- Ying Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Yulin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Wei Xu
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Panpan Wei
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, Rescue Center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
5
|
Derangula S, Nadumane VK. Analysis of the Anticancer Mechanism of OR3 Pigment from Streptomyces coelicolor JUACT03 Against the Human Hepatoma Cell Line Using a Proteomic Approach. Cell Biochem Biophys 2024; 82:1061-1077. [PMID: 38578403 DOI: 10.1007/s12013-024-01258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
This study assessed OR3 pigment, derived from Streptomyces coelicolor JUACT03, for its anticancer potential on HepG2 liver cancer cells and its safety on HEK293 normal cells. OR3 induced apoptosis and inhibited HepG2 cell proliferation, confirmed by caspase activation, Sub-G1 phase cell cycle arrest, and reduced colony formation. Proteomic analysis revealed altered expression of proteins associated with ribosomal function, mRNA processing, nuclear transport, proteasome activity, carbohydrate metabolism, chaperone function, histone regulation, and vesicle-mediated transport. Downregulation of proteins in MAPKAP kinase1, EIF2, mTOR, and EIF4 pathways contributed to apoptosis and cell cycle arrest. Changes in c-MYC, FUBP1 target proteins and upregulation of Prohibitin-1 (PHB1) were also noted. Western blot analysis supported alterations in eIF2, mTOR, and RAN pathways, including downregulation of RAB 5, c-MYC, p38, MAPK1, and MAPK3. OR3 exhibited significant anti-angiogenic activity in the in ovo CAM assay. In summary, OR3 demonstrated strong anticancer effects, inducing apoptosis, hindering proliferation, and displaying antiangiogenic properties. These findings highlight OR3's potential as an anticancer drug candidate, warranting further in vivo exploration.
Collapse
Affiliation(s)
- Somasekhara Derangula
- Department of Biotechnology, Center for Research in Pure and Applied Sciences, School of Sciences, JAIN (Deemed-to-Be-University), Bangalore, Karnataka, 560078, India
| | - Varalakshmi Kilingar Nadumane
- Department of Biotechnology, Center for Research in Pure and Applied Sciences, School of Sciences, JAIN (Deemed-to-Be-University), Bangalore, Karnataka, 560078, India.
| |
Collapse
|
6
|
Jokelainen O, Rintala TJ, Fortino V, Pasonen-Seppänen S, Sironen R, Nykopp TK. Differential expression analysis identifies a prognostically significant extracellular matrix-enriched gene signature in hyaluronan-positive clear cell renal cell carcinoma. Sci Rep 2024; 14:10626. [PMID: 38724670 PMCID: PMC11082176 DOI: 10.1038/s41598-024-61426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.
Collapse
Affiliation(s)
- Otto Jokelainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Teemu J Rintala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Reijo Sironen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Timo K Nykopp
- Department of Surgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Surgery, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Suo F, Wu Y, Zhou Q, Li L, Wei X. BIRC3-HSP90B1 Interaction Inhibits Non-Small Cell Lung Cancer Progression through the Extracellular Signal-Regulated Kinase Pathway. ACS OMEGA 2024; 9:19148-19157. [PMID: 38708247 PMCID: PMC11064049 DOI: 10.1021/acsomega.3c10274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The long-term prognosis of nonsmall cell lung cancer (NSCLC) remains unsatisfactory, which is a major challenge in lung cancer treatment. BIRC3 is an inhibitor of apoptosis (IAP) protein that contributes to tumor regulation. However, the underlying regulatory mechanisms of BIRC3 in NSCLC remains unknown. We initiated an analysis of BIRC3 expression data in NSCLC tumors and adjacent tissues using the TCGA and GEO databases and examined the variations in prognosis. Further, we conducted overexpression (OE) and knockdown (KD) studies on BIRC3 to evaluate its effects on NSCLC cell proliferation, migration, and invasion. Additionally, through utilization of a nude mouse model, the regulatory effects of BIRC3 on NSCLC were verified in vivo. Co-immunoprecipitation (Co-IP) assay served to pinpoint the proteins with which BIRC3 interacts. The results indicated that BIRC3 is down-regulated in NSCLC tissues and that patients with high BIRC3 expression demonstrate a better prognosis. BIRC3 is a tumor suppressor, inhibiting the proliferation and metastasis of NSCLC. Co-IP results revealed that BIRC3 interacts with HSP90B1, leading to a decrease in HSP90B1 expression and subsequent negative regulation of the ERK signaling pathway. BIRC3 may serve as a prognostic biomarker for NSCLC. It directly interacts with HSP90B1 to negatively regulate the ERK signaling pathway, thereby hindering the progression of NSCLC.
Collapse
Affiliation(s)
| | | | | | - Longfei Li
- Department of Cardiothoracic
Surgery, Xuzhou Cancer Hospital, Xuzhou 221000, P.R China
| | - Xiangju Wei
- Department of Cardiothoracic
Surgery, Xuzhou Cancer Hospital, Xuzhou 221000, P.R China
| |
Collapse
|
8
|
Tong Q, Zhou J. Construction of a 12-gene prognostic model for colorectal cancer based on heat shock protein-related genes. Int J Hyperthermia 2024; 41:2290913. [PMID: 38191150 DOI: 10.1080/02656736.2023.2290913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Some heat shock proteins (HSPs) have been shown to influence tumor prognosis, but their prognostic significance in colorectal cancer (CRC) remains unclear. This study explored the prognostic significance of HSP-related genes in CRC. Transcriptional data and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) database, and a literature search was conducted to identify HSP-related genes. Using Least Absolute Selection and Shrinkage Operator (LASSO) regression and univariate/multivariate Cox regression analyses, 12 HSP-related genes demonstrating significant associations with CRC survival were successfully identified and employed to formulate a predictive risk score model. The efficacy and precision of this model were validated utilizing TCGA and Gene Expression Omnibus (GEO) datasets, demonstrating its reliability in CRC prognosis prediction. gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significant disparities between high- and low-risk groups in chromatin remodeling biological functions and neutrophil extracellular trap formation pathways. Single sample gene set enrichment analysis (ssGSEA) further revealed differences in immune cell types and immune functional status between the two risk groups. Differential analysis showed higher expression of immune checkpoints within the low-risk group, while the high-risk group exhibited notably higher Tumor Immune Dysfunction and Exclusion (TIDE) scores. Additionally, we predicted the sensitivity of different prognosis risk patients to various drugs, providing potential drug choices for tailored treatment. Combined, our study successfully crafted a novel CRC prognostic model that can effectively predict patient survival, immune landscape, and treatment response, providing important support and guidance for CRC patient prognosis.
Collapse
Affiliation(s)
- Qin Tong
- Department of Gastrointestinal Surgery, Jinhua Guangfu Hospital, Jinhua, China
| | - Junchao Zhou
- Department of Gastrointestinal Surgery, Jinhua Guangfu Hospital, Jinhua, China
| |
Collapse
|
9
|
Zhou W, Zeng W, Zheng D, Yang X, Qing Y, Zhou C, Liu X. Construction of a prognostic model for lung adenocarcinoma based on heat shock protein-related genes and immune analysis. Cell Stress Chaperones 2023; 28:821-834. [PMID: 37691069 PMCID: PMC10746678 DOI: 10.1007/s12192-023-01374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Lung adenocarcinoma (LUAD) represents a prevalent form of cancer, with low early diagnosis rates and high mortality rates, posing a global health challenge. Heat shock proteins (HSPs) assume a crucial role within the tumor immune microenvironment (TME) of LUAD. Here, a collection of 97 HSP-related genes (HSPGs) was assembled based on prior literature reports, of which 36 HSPGs were differentially expressed in LUAD. In The Cancer Genome Atlas (TCGA) cohort, we constructed a prognostic model for risk stratification and prognosis prediction by integrating 13 HSPGs. In addition, the prognostic significance and predictive efficacy of the HSP-related riskscore were examined and validated in the Gene Expression Omnibus (GEO) cohort. To facilitate the clinical use of this riskscore, we also established a nomogram scale by verifying its effectiveness through different methods. In light of these outcomes, we concluded a significant correlation between HSPs and TME in LUAD, and the riskscore can be a reliable prognostic indicator. Furthermore, this study evaluated the differences in immunophenoscore, tumor immune dysfunction and exclusion score, and sensitivity to several common chemotherapy drugs among LUAD individuals in different risk groups, which may aid in clinical decision-making for immune therapy and chemotherapy in LUAD individuals.
Collapse
Affiliation(s)
- Wangyan Zhou
- Department of Medical Record, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Wei Zeng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Dayang Zheng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Xu Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Yongcheng Qing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Chunxiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China
| | - Xiang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Avenue 35, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
10
|
Wang Y, Zhu H, Xu H, Qiu Y, Zhu Y, Wang X. Senescence-related gene c-Myc affects bladder cancer cell senescence by interacting with HSP90B1 to regulate cisplatin sensitivity. Aging (Albany NY) 2023; 15:7408-7423. [PMID: 37433010 PMCID: PMC10457043 DOI: 10.18632/aging.204863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Patients with advanced bladder cancer gradually become less sensitive to chemotherapeutic agents, leading to tumor recurrence. Initiating the senescence program in solid tumors may be an important means of improving short-term drug sensitivity. The important role of c-Myc in bladder cancer cell senescence was determined using bioinformatics methods. The response to cisplatin chemotherapy in bladder cancer sample was analyzed according to the Genomics of Drug Sensitivity in Cancer database. Cell Counting Kit-8 assay, clone formation assay, and senescence-associated β-galactosidase staining were used to assess bladder cancer cell growth, senescence, and sensitivity to cisplatin, respectively. Western blot and immunoprecipitation were performed to understand the regulation of p21 by c-Myc/HSP90B1. Bioinformatic analysis showed that c-Myc, a cellular senescence gene, was significantly associated with bladder cancer prognosis and sensitivity to cisplatin chemotherapy. c-Myc and HSP90B1 expression were highly correlated in bladder cancer. Reducing the level of c-Myc significantly inhibited bladder cancer cell proliferation, promoted cellular senescence, and enhanced cisplatin chemosensitivity. Immunoprecipitation assays confirmed that HSP90B1 interacted with c-Myc. Western blot analysis showed that reducing the level of HSP90B1 could redeem the p21 overexpression caused by c-Myc overexpression. Further studies showed that reducing HSP90B1 expression could alleviate the rapid growth and accelerate cellular senescence of bladder cancer cells caused by c-Myc overexpression, and that reducing HSP90B1 levels could also improve cisplatin sensitivity in bladder cancer cells. HSP90B1/c-Myc interaction regulates the p21 signaling pathway, which affects cisplatin chemosensitivity by modulating bladder cancer cell senescence.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong 226361, China
| | - Haixia Zhu
- Department of Central Laboratory, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong 226361, China
| | - Haifei Xu
- Department of Urology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong 226361, China
| | - Yifan Qiu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yonghong Zhu
- Department of Urology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong 226361, China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong 226361, China
| |
Collapse
|
11
|
Chen Z, Chen D, Song Z, Lv Y, Qi D. Mapping the tumor microenvironment in bladder cancer and exploring the prognostic genes by single-cell RNA sequencing. Front Oncol 2023; 12:1105026. [PMID: 36741702 PMCID: PMC9893503 DOI: 10.3389/fonc.2022.1105026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Despite substantial advances in the treatment using immune checkpoint inhibitors (ICIs), the clinical expected therapeutic effect on bladder cancer has not been achieved, in which the tumor microenvironment (TME) occupies a notable position. In this research, 10X single-cell RNA-sequencing technology was conducted to analyze seven primary bladder tumor tissues (three non-muscle-invasive bladder cancer (NMIBC) and four muscle-invasive bladder cancer (MIBC)) and seven corresponding normal tissues adjacent to cancer; eight various cell types were identified in the bladder cancer (BC) TME, and a complete TME atlas in bladder cancer was made. Moreover, bladder cancer epithelial cells were further subdivided into 14 subgroups, indicating a high intra-tumoral heterogeneity. Additionally, the differences between NMIBC and MIBC were compared based on differential gene expression heatmap, copy number variation (CNV) distribution heatmap, Gene Ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) network mutual analysis, and the Kaplan-Meier survival prognosis analysis were used to identify six key genes associated with the prognosis of bladder cancer: VEGFA, ANXA1, HSP90B1, PSMA7, PRDX6, and PPP1CB. The dynamic change of the expression distribution of six genes on the pseudo-time axis was further verified by cell pseudo-time analysis.
Collapse
|