1
|
Zhang J, Qian J. Advances in Computational Intelligence-Based Methods of Structure and Function Prediction of Proteins. Biomolecules 2024; 14:1083. [PMID: 39334850 PMCID: PMC11430421 DOI: 10.3390/biom14091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Proteins serve as the building blocks of life and play essential roles in almost every cellular process [...].
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China;
| | | |
Collapse
|
2
|
Porcelli F, Casavola AR, Grottesi A, Schiumarini D, Avaldi L. Probing the conformational dynamics of an Ago-RNA complex in water/methanol solution. Phys Chem Chem Phys 2024; 26:2497-2508. [PMID: 38170800 DOI: 10.1039/d3cp05530b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Argonaute (Ago) proteins mediate target recognition guiding miRNA to bind complementary mRNA primarily in the seed region. However, additional pairing can occur beyond the seed, forming a supplementary duplex that can contribute to the guide-target affinity. In order to shed light on the connection, between protein-RNA interactions and miRNA-mRNA seed and supplementary duplex mobility, we carried out molecular dynamics simulations at the microsecond time-scale using a different approach compared to the ones normally used. Until now, theoretical investigations with classical MD on Ago-RNA complexes have been focused primarily on pure water solvent, which mimics the natural environment of biological molecules. Here, we explored the conformational space of a human Ago2 (hAgo2) bound to the seed + supplementary miRNA-mRNA duplex, using the solvent environment as a molecular probe. MD simulations have been performed in a mixture of water/MeOH at a molar ratio of 70 : 30 as well as in pure water for comparison. Our findings revealed that the mixed solvent promotes protein RNA association, principally enhancing salt-linkages between basic amino acid side-chains and acidic phosphates of the sugar-phosphate backbone. The primary effect registered was the restriction of supplementary duplex flexibility and the stabilization of the miRNA 3' terminus. Interestingly, we observed that the influence of the solvent appears to have almost no impact on the conformation of the seed duplex.
Collapse
Affiliation(s)
- Francesco Porcelli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy.
| | - Anna Rita Casavola
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy.
| | | | - Donatella Schiumarini
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy.
| | - Lorenzo Avaldi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy.
| |
Collapse
|
3
|
Zha J, He J, Wu C, Zhang M, Liu X, Zhang J. Designing drugs and chemical probes with the dualsteric approach. Chem Soc Rev 2023; 52:8651-8677. [PMID: 37990599 DOI: 10.1039/d3cs00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Traditionally, drugs are monovalent, targeting only one site on the protein surface. This includes orthosteric and allosteric drugs, which bind the protein at orthosteric and allosteric sites, respectively. Orthosteric drugs are good in potency, whereas allosteric drugs have better selectivity and are solutions to classically undruggable targets. However, it would be difficult to simultaneously reach high potency and selectivity when targeting only one site. Also, both kinds of monovalent drugs suffer from mutation-caused drug resistance. To overcome these obstacles, dualsteric modulators have been proposed in the past twenty years. Compared to orthosteric or allosteric drugs, dualsteric modulators are bivalent (or bitopic) with two pharmacophores. Each of the two pharmacophores bind the protein at the orthosteric and an allosteric site, which could bring the modulator with special properties beyond monovalent drugs. In this study, we comprehensively review the current development of dualsteric modulators. Our main effort reason and illustrate the aims to apply the dualsteric approach, including a "double win" of potency and selectivity, overcoming mutation-caused drug resistance, developments of function-biased modulators, and design of partial agonists. Moreover, the strengths of the dualsteric technique also led to its application outside pharmacy, including the design of highly sensitive fluorescent tracers and usage as molecular rulers. Besides, we also introduced drug targets, designing strategies, and validation methods of dualsteric modulators. Finally, we detail the conclusions and perspectives.
Collapse
Affiliation(s)
- Jinyin Zha
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhang X, Liang W, Zheng G, Li B. Decoding the deactivation mechanism of R192W mutation of ZAP-70 using molecular dynamics simulations and binding free energy calculations. J Mol Model 2023; 29:371. [PMID: 37953318 DOI: 10.1007/s00894-023-05771-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
CONTEXT ZAP-70 (zeta-chain-associated protein of 70 kDa), serving as a critical regulator for T cell antigen receptor signaling, represents an attractive therapeutic target for autoimmunity disease. How the mechanistical mechanism of ZAP-70 to a human autoimmune syndrome-associated R192W mutation remains unclear. The results indicated that the R192W mutation of ZAP-70 clearly affected the conformational flexibility of the N-terminal ITAM-Y2P. Structural analysis unveiled that the R192W mutation of ZAP-70 caused the exposure of the N-terminal ITAM-Y2P to the solvent. MM-GBSA binding free energy calculations exhibited that the R192W mutation decreased the binding affinity of ITAM-Y2P to the ZAP-70 mutant. Residue-based free energy decomposition further revealed that the protein-peptide interaction networks involving electrostatic interactions provide significant contributions for complex formation. The energy unfavorable residues include Arg43, Arg192, Tyr240, and Lys244 from ZAP-70 and Asn301, Leu303, pY304, and pY315 from ITAM-Y2P in the R192W mutant. Our obtained results may help the understanding of the deactivation mechanism of ZAP-70 induced by the R192W mutation. METHODS In the work, multiple replica molecular dynamics simulations and molecular mechanics-generalized Born surface area (MM-GBSA) method were performed to reveal the doubly phosphorylated ITAMs (ITAM-Y2P)-mediated deactivation mechanism of ZAP-70 induced by the R192W mutation.
Collapse
Affiliation(s)
- Xuehua Zhang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Wenqi Liang
- Department of Emergency, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Guodong Zheng
- Department of VIP Clinic, Changhai Hospital, The First Affiliated Hospital to Naval Medical University, Shanghai, 200433, China.
| | - Bei Li
- Department of VIP Clinic, Changhai Hospital, The First Affiliated Hospital to Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|