1
|
Shaughnessy CA, Le K, Myhre VD, Dores RM. Functional characterization of melanocortin 2 receptor (Mc2r) from a lobe-finned fish (Protopterus annectens) and insights into the molecular evolution of melanocortin receptors. Gen Comp Endocrinol 2023; 343:114356. [PMID: 37562700 DOI: 10.1016/j.ygcen.2023.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Recent studies from our group on melanocortin 2 receptors (Mc2r) from basal families of actinopterygians have served to resolve that Mrap1 dependence and ACTH selectivity are features of even the most basal ray-finned fishes. However, there have been no studies on Mc2r function of the basal sarcopterygians, the lobe-finned fishes, represented by the extant members coelacanths and lungfishes. Here, we offer the first molecular and functional characterization of an Mc2r from a lobe-finned fish, the West African lungfish (Protopterus annectens). Plasmids containing cDNA constructs of lungfish (lf) Mc2r and Mrap1 were expressed in mammalian and zebrafish cell lines. Cells were then stimulated by human ACTH(1-24) and melanocyte stimulating hormone (α-MSH), as well as alanine-substituted analogs of hACTH(1-24) targeting residues within the H6F7R8W9 and K15K16R17R18P19 motifs. Activation of lfMc2r was assessed using a cAMP-responsive luciferase reporter gene assay. In these assays, lfMc2r required co-expression with lfMrap1, was selective for ACTH over α-MSH at physiological concentrations of the ligands, and was completely inhibited by multiple-alanine substitutions of the HFRW (A6-9) and KKRRP (A15-19) motifs. Single- and partial-alanine substitutions of the HFRW and KKRRP motifs varied in their impacts on receptor-ligand affinity from having no effect to completely inhibiting lfMc2r activation. This characterization of the Mc2r of a lobe-finned fish fulfills the last major extant vertebrate group for which Mc2r function had yet to be characterized. In doing so, we resolve that all basal bony vertebrate groups exhibit Mc2r function that substantially differs from that of the cartilaginous fishes, indicating that rapid and dramatic shift in Mc2r function occurred between the radiation of cartilaginous fishes and the emergence of bony fishes. We support this interpretation with a molecular clock analysis of the melanocortin receptors, which demonstrates the uniquely high rate of sequence divergence in Mc2r. Much remains to be understood regarding the molecular evolution of Mc2r during the early radiation of vertebrates that resulted in the derived functional characteristics of Mrap1 dependence and exclusive selectivity for ACTH.
Collapse
Affiliation(s)
| | - Khoa Le
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Valorie D Myhre
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
2
|
Bouyoucos IA, Shaughnessy CA, Gary Anderson W, Dores RM. Molecular and pharmacological analysis of the melanocortin-2 receptor and its accessory proteins Mrap1 and Mrap2 in a Squalomorph shark, the Pacific spiny dogfish. Gen Comp Endocrinol 2023; 342:114342. [PMID: 37454980 DOI: 10.1016/j.ygcen.2023.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is a conserved vertebrate neuroendocrine mechanism regulating the stress response. The penultimate step of the HPA/I axis is the exclusive activation of the melanocortin-2 receptor (Mc2r) by adrenocorticotropic hormone (ACTH), requiring an accessory protein, Mrap1 or Mrap2. Limited data for only three cartilaginous fishes support the hypothesis that Mc2r/Mrap1 function in bony vertebrates is a derived trait. Further, Mc2r/Mrap1 functional properties appear to contrast among cartilaginous fishes (i.e., the holocephalans and elasmobranchs). This study sought to determine whether functional properties of Mc2r/Mrap1 are conserved across elasmobranchs and in contrast to holocephalans. The deduced amino acid sequences of Pacific spiny dogfish (Squalus suckleyi; pd) pdMc2r, pdMrap1, and pdMrap2 were obtained from a de novo transcriptome of the interrenal gland and validated against the S. suckleyi genome. pdMc2r showed high primary sequence similarity with elasmobranch and holocephalan Mc2r except at extracellular domains 1 and 2, and transmembrane domain 5. pdMraps showed similarly high sequence similarity with holocephalan and other elasmobranch Mraps, with all cartilaginous fish Mrap1 orthologs lacking an activation motif. cAMP reporter gene assays demonstrated that pdMc2r requires an Mrap for activation, and can be activated by stingray (sr) ACTH(1-24), srACTH(1-13)NH2 (i.e., α-MSH), and γ-melanocyte-stimulating hormone at physiological concentrations. However, pdMc2r was three orders of magnitude more sensitive to srACTH(1-24) than srACTH(1-13)NH2. Further, pdMc2r was two orders of magnitude more sensitive to srACTH(1-24) when expressed with pdMrap1 than with pdMrap2. These data suggest that functional properties of pdMc2r/pdMrap1 reflect other elasmobranchs and contrast what is seen in holocephalans.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada.
| | | | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
3
|
Shaughnessy CA, Myhre VD, Hall DJ, McCormick SD, Dores RM. Hypothalamus-pituitary-interrenal (HPI) axis signaling in Atlantic sturgeon (Acipenser oxyrinchus) and sterlet (Acipenser ruthenus). Gen Comp Endocrinol 2023; 339:114290. [PMID: 37088167 DOI: 10.1016/j.ygcen.2023.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
In vertebrates, the hypothalamic-pituitary-adrenal/interrenal (HPA/HPI) axis is a highly conserved endocrine axis that regulates glucocorticoid production via signaling by corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH). Once activated by ACTH, Gs protein-coupled melanocortin 2 receptors (Mc2r) present in corticosteroidogenic cells stimulate expression of steroidogenic acute regulatory protein (Star), which initiates steroid biosynthesis. In the present study, we examined the tissue distribution of genes involved in HPI axis signaling and steroidogenesis in the Atlantic sturgeon (Acipenser oxyrinchus) and provided the first functional characterization of Mc2r in sturgeon. Mc2r of A. oxyrinchus and the sterlet sturgeon (Acipenser ruthenus) are co-dependent on interaction with the melanocortin receptor accessory protein 1 (Mrap1) and highly selective for human (h) ACTH over other melanocortin ligands. A. oxyrinchus expresses key genes involved in HPI axis signaling in a tissue-specific manner that is indicative of the presence of a complete HPI axis in sturgeon. Importantly, we co-localized mc2r, mrap1, and star mRNA expression to the head kidney, indicating that this is possibly a site of ACTH-mediated corticosteroidogenesis in sturgeon. Our results are discussed in the context of other studies on the HPI axis of basal bony vertebrates, which, when taken together, demonstrate a need to better resolve the evolution of HPI axis signaling in vertebrates.
Collapse
Affiliation(s)
- Ciaran A Shaughnessy
- Department of Biological Sciences, University of Denver, Denver, CO, United States.
| | - Valorie D Myhre
- Department of Biological Sciences, University of Denver, Denver, CO, United States
| | - Daniel J Hall
- U.S. Geological Survey, Eastern Ecological Science Center, S. O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, S. O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA; Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO, United States
| |
Collapse
|
4
|
Hoglin BE, Miner MV, Erbenebayar U, Shaughnessy CA, Dores RM. Trends in the evolution of the elasmobranch melanocortin-2 receptor: Insights from structure/function studies on the activation of whale shark Mc2r. Gen Comp Endocrinol 2023; 338:114278. [PMID: 36996927 DOI: 10.1016/j.ygcen.2023.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
To understand the mechanism for activation of the melanocortin-2 receptor (Mc2r) of the elasmobranch, Rhincodon typus (whale shark; ws), wsmc2r was co-expressed with wsmrap1 in CHO cells, and the transfected cells were stimulated with alanine-substituted analogs of ACTH(1-24) at the "message" motif (H6F7R8W9) and the "address" motif (K15K16R17R18P19). Complete alanine substitution of the H6F7R8W9 motif blocked activation, whereas single alanine substitution at this motif indicated the following hierarchy of position importance for activation: W9 > R8, and substitution at F7 and H6 had no effect on activation. The same analysis was done on a representative bony vertebrate Mc2r ortholog (Amia calva; bowfin; bf) and the order of position importance for activation was W9 > R8 = F7, (alanine substitution at H6 was negligible). Complete alanine substitution at the K15K16R17R18P19 motif resulted in distinct outcomes for wsMc2r and bfMc2r. For bfMc2r, this analog blocked activation-an outcome typical for bony vertebrate Mc2r orthologs. For wsMc2r, this analog resulted in a shift in sensitivity to stimulation of the analog as compared to ACTH(1-24) by two orders of magnitude, but the dose response curve did reach saturation. To evaluate whether the EC2 domain of wsMc2r plays a role in activation, a chimeric wsMc2r was made in which the EC2 domain was replaced with the EC2 domain from a melanocortin receptor that does not interact with Mrap1 (i.e., Xenopus tropicalis Mc1r). This substitution did not negatively impact the activation of the chimeric receptor. In addition, alanine substitution at a putative activation motif in the N-terminal of wsMrap1 did not affect the sensitivity of wsMc2r to stimulation by ACTH(1-24). Collectively, these observations suggest that wsMc2r may only have a HFRW binding site for melanocortin-related ligand which would explain how wsMc2r could be activated by either ACTH or MSH-sized ligands.
Collapse
Affiliation(s)
- Brianne E Hoglin
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Marin V Miner
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Ugumuur Erbenebayar
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | | | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| |
Collapse
|