1
|
Brown R, Dougan C, Ferris P, Delaney R, Houston CJ, Rodgers A, Downey DG, Mall MA, Connolly B, Small D, Weldon S, Taggart CC. SLPI deficiency alters airway protease activity and induces cell recruitment in a model of muco-obstructive lung disease. Front Immunol 2024; 15:1433642. [PMID: 39301022 PMCID: PMC11410634 DOI: 10.3389/fimmu.2024.1433642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) is an important cationic protein involved in innate airway immunity and highly expressed in mucosal secretions, shown to target and inhibit neutrophil elastase (NE), cathepsin G and trypsin activity to limit proteolytic activity. In addition to the potent anti-protease activity, SLPI has been demonstrated to exert a direct anti-inflammatory effect, which is mediated via increased inhibition and competitive binding of NF-κB, regulating immune responses through limiting transcription of pro-inflammatory gene targets. In muco-obstructive lung disorders, such as Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF), there is an observed elevation in airway SLPI protein concentrations as a result of increased lung inflammation and disease progression. However, studies have identified COPD patients presenting with diminished SLPI concentrations. Furthermore, there is a decrease in SLPI concentrations through cleavage and subsequent inactivation by NE degradation in Pseudomonas aeruginosa infected people with CF (pwCF). These observations suggest reduced SLPI protein levels may contribute to the compromising of airway immunity indicating a potential role of decreased SLPI levels in the pathogenesis of muco-obstructive lung disease. The Beta Epithelial Na+ Channel transgenic (ENaC-Tg) mouse model phenotype exhibits characteristics which replicate the pathological features observed in conditions such as COPD and CF, including mucus accumulation, alterations in airway morphology and increased pulmonary inflammation. To evaluate the effect of SLPI in muco-obstructive pulmonary disease, ENaC-Tg mice were crossed with SLPI knock-out (SLPI-/-) mice, generating a ENaC-Tg/SLPI-/- colony to further investigate the role of SLPI in chronic lung disease and determine the effect of its ablation on disease pathogenesis.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Caoifa Dougan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Peter Ferris
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Rebecca Delaney
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Claire J Houston
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Aoife Rodgers
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bronwen Connolly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Donna Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Rosen AL, Lint MA, Voelker DH, Gilbert NM, Tomera CP, Santiago-Borges J, Wallace MA, Hannan TJ, Burnham CAD, Hultgren SJ, Kau AL. Secretory leukocyte protease inhibitor protects against severe urinary tract infection in mice. mBio 2024; 15:e0255423. [PMID: 38270443 PMCID: PMC10865866 DOI: 10.1128/mbio.02554-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes, and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial, and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a preclinical model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC-infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with a history of recent or recurrent UTI, suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI promotes clearance of UPEC in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.IMPORTANCEAnnually, millions of people suffer from urinary tract infections (UTIs) and more than $3 billion are spent on work absences and treatment of these patients. While the early response to UTI is known to be important in combating urinary pathogens, knowledge of host factors that help curb infection is still limited. Here, we use a preclinical model of UTI to study secretory leukocyte protease inhibitor (SLPI), an antimicrobial protein, to determine how it protects the bladder against infection. We find that SLPI is increased during UTI, accelerates the clearance of bacteriuria, and upregulates genes and pathways needed to fight an infection while preventing prolonged bladder inflammation. In a small clinical study, we show SLPI is readily detectable in human urine and is associated with the presence of a uropathogen in patients without a previous history of UTI, suggesting SLPI may play an important role in protecting from bacterial cystitis.
Collapse
Affiliation(s)
- Anne L. Rosen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael A. Lint
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dayne H. Voelker
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole M. Gilbert
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher P. Tomera
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesús Santiago-Borges
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas J. Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carey-Ann D. Burnham
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Li K, Huang Z, Liu C, Xu Y, Chen W, Shi L, Li C, Zhou F, Zhou F. Transcriptomic analysis of human pulmonary microvascular endothelial cells treated with LPS. Cell Signal 2023; 111:110870. [PMID: 37633475 DOI: 10.1016/j.cellsig.2023.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has a rapid onset and progression, which lead to the severity and complexity of the primary disease and significantly increase the fatality rate of patients. Transcriptomics provides some ideas for clarifying the mechanism of ARDS, exploring prevention and treatment targets, and searching for related specific markers. In this study, RNA-Seq technology was used to observe the gene expression of human pulmonary microvascular endothelial cells (PMVECs) induced by LPS, and to excavate the key genes and signaling pathways in ARDS process. A total of 2300 up-regulated genes were detected, and a corresponding 1696 down-regulated genes were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein-protein interaction (PPI) were also used for functional annotation of key genes. TFDP1 was identified as a cell cycle-dependent differentially expressed gene, and its reduced expression was verified in LPS-treated PMVECs and lung tissues of CLP-induced mice. In addition, the inhibition of TFDP1 on inflammation and apoptosis, and the promotion of proliferation were confirmed. The decreased expression of E2F1, Rb, CDK1 and the activation of MAPK signaling pathway were substantiated in the in vivo and in vitro models of ARDS. Moreover, SREBF1 has been demonstrated to be involved in cell cycle arrest in PMVECs by inhibiting CDK1. Our study shows that transcriptomics combined with basic research can broaden the investigation of ARDS mechanisms and may provide a basis for future mechanistic innovations.
Collapse
Affiliation(s)
- Kaili Li
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, 400030 Chongqing Municipality, China
| | - Chang Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| | - Yuanyuan Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Wei Chen
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Lu Shi
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Can Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Fawei Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Fachun Zhou
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China; Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
4
|
Rosen AL, Lint MA, Voelker DH, Gilbert NM, Tomera CP, Santiago-Borges J, Wallace MA, Hannan TJ, Burnham CAD, Hultgren SJ, Kau AL. Secretory Leukocyte Protease Inhibitor Protects Against Severe Urinary Tract Infection in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561753. [PMID: 37873489 PMCID: PMC10592744 DOI: 10.1101/2023.10.10.561753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a mouse model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with history of recent or recurrent UTI (rUTI), suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI protects against acute UTI in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.
Collapse
Affiliation(s)
- Anne L. Rosen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Michael A. Lint
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Dayne H. Voelker
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Nicole M. Gilbert
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Christopher P. Tomera
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Jesús Santiago-Borges
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Thomas J. Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Carey-Ann D. Burnham
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|