1
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
2
|
Arellano MYG, VanHeest M, Emmadi S, Abdul-Hafez A, Ibrahim SA, Thiruvenkataramani RP, Teleb RS, Omar H, Kesaraju T, Mohamed T, Madhukar BV, Omar SA. Role of Mesenchymal Stem/Stromal Cells (MSCs) and MSC-Derived Extracellular Vesicles (EVs) in Prevention of Telomere Length Shortening, Cellular Senescence, and Accelerated Biological Aging. Bioengineering (Basel) 2024; 11:524. [PMID: 38927760 PMCID: PMC11200821 DOI: 10.3390/bioengineering11060524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Biological aging is defined as a progressive decline in tissue function that eventually results in cell death. Accelerated biologic aging results when the telomere length is shortened prematurely secondary to damage from biological or environmental stressors, leading to a defective reparative mechanism. Stem cells therapy may have a potential role in influencing (counteract/ameliorate) biological aging and maintaining the function of the organism. Mesenchymal stem cells, also called mesenchymal stromal cells (MSCs) are multipotent stem cells of mesodermal origin that can differentiate into other types of cells, such as adipocytes, chondrocytes, and osteocytes. MSCs influence resident cells through the secretion of paracrine bioactive components such as cytokines and extracellular vesicles (EVs). This review examines the changes in telomere length, cellular senescence, and normal biological age, as well as the factors contributing to telomere shortening and accelerated biological aging. The role of MSCs-especially those derived from gestational tissues-in prevention of telomere shortening (TS) and accelerated biological aging is explored. In addition, the strategies to prevent MSC senescence and improve the antiaging therapeutic application of MSCs and MSC-derived EVs in influencing telomere length and cellular senescence are reviewed.
Collapse
Affiliation(s)
- Myrna Y. Gonzalez Arellano
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Regional Neonatal Intensive Care Unit, Sparrow Hospital, Lansing, MI 48912, USA
| | - Matthew VanHeest
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
| | - Sravya Emmadi
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
| | - Amal Abdul-Hafez
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
| | - Sherif Abdelfattah Ibrahim
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ranga P. Thiruvenkataramani
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Regional Neonatal Intensive Care Unit, Sparrow Hospital, Lansing, MI 48912, USA
| | - Rasha S. Teleb
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Department of Pediatrics and Neonatology, Qena Faculty of Medicine, South Valley University, Qena 83523, Egypt
| | - Hady Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
| | - Tulasi Kesaraju
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
| | - Tarek Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Regional Neonatal Intensive Care Unit, Sparrow Hospital, Lansing, MI 48912, USA
| | - Burra V. Madhukar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
| | - Said A. Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.Y.G.A.); (A.A.-H.); (S.A.I.); (R.P.T.); (R.S.T.); (H.O.); (T.K.); (T.M.); (B.V.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.V.); (S.E.)
- Regional Neonatal Intensive Care Unit, Sparrow Hospital, Lansing, MI 48912, USA
| |
Collapse
|
3
|
Sysoeva A, Akhmedova Z, Nepsha O, Makarova N, Silachev D, Shevtsova Y, Goryunov K, Karyagina V, Bugrova A, Starodubtseva N, Novoselova A, Chagovets V, Kalinina E. Characteristics of the Follicular Fluid Extracellular Vesicle Molecular Profile in Women in Different Age Groups in ART Programs. Life (Basel) 2024; 14:541. [PMID: 38792563 PMCID: PMC11121889 DOI: 10.3390/life14050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study was to investigate the molecular composition of follicular fluid (FF) extracellular vesicles (EVs) in women of different reproductive ages and its possible relationship to sperm fertilizing ability. FF EVs were obtained by differential centrifugation. The concentration and size distribution of FF EVs were analyzed by nanoparticle tracking analysis. The lipidome and proteome were analyzed by liquid chromatography-mass spectrometry. The isolated FF EVs had a variety of shapes and sizes; their concentration and size distribution did not differ significantly between the age groups. In women younger than 35 years, the concentration of vesicular progesterone was 6.6 times higher than in women older than 35 years, and the total levels of the main lipid classes were increased in younger women. A proteomic analysis revealed that not only FF EV-specific proteins, but also proteins involved in sperm activation were present. New data were obtained on the composition of FF EVs, confirming their importance as molecular indicators of age-related changes in the female reproductive system. In addition, these results shed light on the possible interaction between the FF EVs of women in different age groups and male germ cells. Therefore, studying the transcriptomic and metabolomic profile of FF EVs may be a crucial approach to evaluate the efficacy of ART.
Collapse
Affiliation(s)
- Anastasia Sysoeva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Zumriyat Akhmedova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Oksana Nepsha
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Natalya Makarova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Victoria Karyagina
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Anna Bugrova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Natalya Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Anastasia Novoselova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Elena Kalinina
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| |
Collapse
|
4
|
Holmannova D, Borsky P, Parova H, Stverakova T, Vosmik M, Hruska L, Fiala Z, Borska L. Non-Genomic Hallmarks of Aging-The Review. Int J Mol Sci 2023; 24:15468. [PMID: 37895144 PMCID: PMC10607657 DOI: 10.3390/ijms242015468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a natural, gradual, and inevitable process associated with a series of changes at the molecular, cellular, and tissue levels that can lead to an increased risk of many diseases, including cancer. The most significant changes at the genomic level (DNA damage, telomere shortening, epigenetic changes) and non-genomic changes are referred to as hallmarks of aging. The hallmarks of aging and cancer are intertwined. Many studies have focused on genomic hallmarks, but non-genomic hallmarks are also important and may additionally cause genomic damage and increase the expression of genomic hallmarks. Understanding the non-genomic hallmarks of aging and cancer, and how they are intertwined, may lead to the development of approaches that could influence these hallmarks and thus function not only to slow aging but also to prevent cancer. In this review, we focus on non-genomic changes. We discuss cell senescence, disruption of proteostasis, deregualation of nutrient sensing, dysregulation of immune system function, intercellular communication, mitochondrial dysfunction, stem cell exhaustion and dysbiosis.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Milan Vosmik
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Libor Hruska
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| |
Collapse
|
5
|
Borrás C, Mas-Bargues C. The Role of Extracellular Vesicles in Aging and Disease. Int J Mol Sci 2023; 24:13739. [PMID: 37762042 PMCID: PMC10530841 DOI: 10.3390/ijms241813739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cells are exposed to various internal and external factors that can cause damage over time [...].
Collapse
Affiliation(s)
- Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain;
| | | |
Collapse
|
6
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Extracellular Vesicles: The Future of Diagnosis in Solid Organ Transplantation? Int J Mol Sci 2023; 24:ijms24065102. [PMID: 36982182 PMCID: PMC10048932 DOI: 10.3390/ijms24065102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Solid organ transplantation (SOT) is a life-saving treatment for end-stage organ failure, but it comes with several challenges, the most important of which is the existing gap between the need for transplants and organ availability. One of the main concerns in this regard is the lack of accurate non-invasive biomarkers to monitor the status of a transplanted organ. Extracellular vesicles (EVs) have recently emerged as a promising source of biomarkers for various diseases. In the context of SOT, EVs have been shown to be involved in the communication between donor and recipient cells and may carry valuable information about the function of an allograft. This has led to an increasing interest in exploring the use of EVs for the preoperative assessment of organs, early postoperative monitoring of graft function, or the diagnosis of rejection, infection, ischemia-reperfusion injury, or drug toxicity. In this review, we summarize recent evidence on the use of EVs as biomarkers for these conditions and discuss their applicability in the clinical setting.
Collapse
|