1
|
Ardali FR, Sharifan A, Mosavi SME, Mortazavian AM, Jannat B. Production of fermented milk analogs using subcritical water extraction of rice by-products and investigation of its physicochemical, microbial, rheological, and sensory properties. FOOD SCI TECHNOL INT 2024; 30:773-787. [PMID: 37424287 DOI: 10.1177/10820132231186170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Rice milling by-products extract and Persian grape syrup (Persian grape molasses), as the proper alternatives for milk ingredients and sucrose, respectively, can be considered a promising way to produce functional milk analogs. In this study, we studied the production of rice milling by-product extracts via the subcritical water extraction method, as a green method. The optimum extract was then fermented by Lactobacillus casei and Lactobacillus plantarum, and the different physicochemical, sensory, and rheological properties and the viability of these lactic acid bacteria were assessed during fermentation and certain intervals of 28-day storage. Considering rheological properties, the optimum rice milling by-product extract was recognized based on DOE analysis and the rheological curves of fermented drinks and Persian grape molasses were fitted by Herschel-Bulkley and Bingham models, respectively. The extract and also milk analog had excellent fitness with Herschel-Bulkley model, and this fermented milk analog showed a drop in the consistency index, flow behavior, and yield stress during the 28-day storage. According to the results, the viable cell count of Lactobacillus plantarum and Lactobacillus casei remained at 106-108 colony forming unit/mL after 28-day storage, which showed a combination of rice milling by-product ingredients and inulin had a positive effect on the survival rate of lactic acid bacteria. An increase in values of total phenolic compounds, as well as antioxidant activity observed during fermentation; however, these compounds dropped considerably during storage as a result of degradation and interaction with other compounds. Moreover, in terms of sensory evaluation, Lactobacillus plantarum drinks provided the highest overall acceptability among other samples on the 28th day.
Collapse
Affiliation(s)
- Fatemeh Raiesi Ardali
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed M E Mosavi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Amir M Mortazavian
- Faculty of Nutrition Sciences, Food Science Technology/National Nutrition and Food Technology Research, Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Bordini FW, Fernandes JC, de Souza VLC, Galhardo EC, de Mancilha IM, de Almeida Felipe MDG. Characterization of a symbiotic beverage based on water-soluble soybean extract fermented by Lactiplantibacillus plantarum ATCC 8014. Braz J Microbiol 2024; 55:1655-1667. [PMID: 38635155 PMCID: PMC11153477 DOI: 10.1007/s42770-024-01330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
The health benefits of functional foods are associated with consumer interest and have supported the growth of the market for these types of foods, with emphasis on the development of new formulations based on plant extracts. Therefore, the present study aimed to characterize a symbiotic preparation based on water-soluble soy extract, supplemented with inulin and xylitol and fermented by Lactiplantibacillus plantarum ATCC 8014. Regarding nutritional issues, the symbiotic formulation can be considered a source of fiber (2 g/100 mL) and proteins (2.6 g/100 mL), and it also has a low-fat content and low caloric value. This formulation, in terms of microbiological aspects, remained adequate to legal standards after storage for 60 days under refrigeration and also presented an adequate quantity of the aforementioned probiotic strain, corresponding to 9.11 Log CFU.mL-1. These viable L. plantarum cells proved to be resistant to simulated human gastrointestinal tract conditions, reaching the intestine at high cell concentrations of 7.95 Log CFU.mL-1 after 60 days of refrigeration. Regarding sensory evaluation, the formulation showed good acceptance, presenting an average overall impression score of 6.98, 5.98, and 5.16, for control samples stored for 30 and 60 days under refrigeration, respectively. These results demonstrate that water-soluble soy extract is a suitable matrix for fermentation involving L. plantarum ATCC 8014, supporting and providing data on the first steps towards the development of a symbiotic functional food, targeting consumers who have restrictions regarding the consumption of products of animal origin, diabetics, and individuals under calorie restrictions.
Collapse
Affiliation(s)
- Fernanda Weber Bordini
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Júlia Cristina Fernandes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Viviane Lívia Carvalho de Souza
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Elaine Cristina Galhardo
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Ismael Maciel de Mancilha
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Maria das Graças de Almeida Felipe
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil.
| |
Collapse
|
3
|
Muela T, Abellán A, Bande-De León C, Gómez P, Gil MD. Effect of Macro and Microalgae Addition on Nutritional, Physicochemical, Sensorial, and Functional Properties of a Vegetable Cream. Foods 2024; 13:1651. [PMID: 38890879 PMCID: PMC11171859 DOI: 10.3390/foods13111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Algae are a booming resource in the food industry due to their several health benefits. This study assesses the impact of the combined use of selected macro- and microalgae to improve the nutritional profile and the labeling of a vegetable cream by the introduction of nutrition and health claims. As macroalgae, two Ascophyllum nodosum L., one natural (An) and one smoked (AnS), were selected for their high iodine concentration and flavor notes. A new strain of Chlorella vulgaris, golden (CvG), was selected as the microalgae, which is rich in proteins and has a neutral sensorial profile (golden color and mild flavor). In this study, two vegetable creams were compared. The control (CTRL) versus one enriched with a mixture of macroalgae and microalgae (CV-AN). Sensory, physicochemical, and functional properties of both vegetable creams were evaluated. The bioactivity assessed was the effect of iodine as a health claim and antioxidant and antihypertensive properties. CV-AN vegetable cream showed significantly higher values (p < 0.05) for protein content, iodine value, and antioxidant activity, with no significant differences (p > 0.05) in antihypertensive activity or sensory panel. The incorporation of these algae resulted in a vegetable cream with a better nutritional profile and sensory acceptability comparable to the control, offering protein and iodine source claims in the labeling.
Collapse
Affiliation(s)
- Teresa Muela
- Department of Nutrition and Food Technology, Universidad Católica de Murcia-UCAM, Campus de los Jerónimos, 30107 Murcia, Spain; (A.A.); (C.B.-D.L.); (P.G.); (M.D.G.)
| | | | | | | | | |
Collapse
|
4
|
Zhang Z, Zhang Y, Hua Y, Chen G, Fu P, Liu J. Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells. Foods 2024; 13:405. [PMID: 38338539 PMCID: PMC10855183 DOI: 10.3390/foods13030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Chlorella has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into Chlorella. This study aimed to investigate the potential of using Chlorella vulgaris K-01 for selenium biotransformation. To assess the dose-response effect of Se stress on the strain, time-series growth curves were recorded, growth productivity parameters were calculated, and Gaussian process (GP) regression analysis was performed. The strain's carbon and energy metabolism were evaluated by measuring residual glucose in the medium. Characterization of different forms of intracellular Se and residual Se in the medium was conducted using inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES). The EC50 value for the strain in response to Se stress was 38.08 mg/L. The maximum biomass productivity was 0.26 g/L/d. GP regression analysis revealed that low-level Se treatment could increase the biomass accumulation and the carrying capacity of Chlorella vulgaris K-01 in a heterotrophic culture. The maximum organic Se in biomass was 154.00 μg/g DW. These findings lay the groundwork for understanding heterotrophic microalgal production of Se-containing nutraceuticals, offering valuable insights into Se tolerance, growth dynamics, and metabolic responses in Chlorella vulgaris K-01.
Collapse
Affiliation(s)
- Zhenyu Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanying Hua
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guancheng Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jing Liu
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
5
|
Pop OL, Suharoschi R, Socaci SA, Berger Ceresino E, Weber A, Gruber-Traub C, Vodnar DC, Fărcaș AC, Johansson E. Polyphenols—Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants (Basel) 2023; 12:antiox12040865. [PMID: 37107240 PMCID: PMC10135483 DOI: 10.3390/antiox12040865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elaine Berger Ceresino
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Achim Weber
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Carmen Gruber-Traub
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
6
|
Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023; 12:foods12051005. [PMID: 36900522 PMCID: PMC10000644 DOI: 10.3390/foods12051005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Fermentation was traditionally used all over the world, having the preservation of plant and animal foods as a primary role. Owing to the rise of dairy and meat alternatives, fermentation is booming as an effective technology to improve the sensory, nutritional, and functional profiles of the new generation of plant-based products. This article intends to review the market landscape of fermented plant-based products with a focus on dairy and meat alternatives. Fermentation contributes to improving the organoleptic properties and nutritional profile of dairy and meat alternatives. Precision fermentation provides more opportunities for plant-based meat and dairy manufacturers to deliver a meat/dairy-like experience. Seizing the opportunities that the progress of digitalization is offering would boost the production of high-value ingredients such as enzymes, fats, proteins, and vitamins. Innovative technologies such as 3D printing could be an effective post-processing solution following fermentation in order to mimic the structure and texture of conventional products.
Collapse
|