1
|
Yağır MO, Şen Ş, Şen U. Examination of Various Abutment Designs Behavior Depending on Load Using Finite Element Analysis. Biomimetics (Basel) 2024; 9:498. [PMID: 39194477 DOI: 10.3390/biomimetics9080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Studies on dental implant abutments' geometric design and material selection offer significant innovations and results. These studies aim to improve the abutments' functionality and aesthetic performance, minimize microcavities' formation, and ensure implant-supported prostheses' longevity. For example, CAD-CAM fabricated custom abutments have been found to produce a better marginal fit and fewer microgaps than standard abutments. In an in vitro study, transepithelial abutments offered lower microgap values than titanium-based abutments and provided a better fit at the implant-abutment interface. It is known that studies to improve mechanical and biological performance with Polyether Ether Ketone (PEEK) material have been addressed. New materials such as PEEK and zirconia have offered significant advantages in biocompatibility and aesthetics. Along with those studies, different abutment designs are also important. Abutment geometry is optimized to improve stress distribution and minimize peri-implant bone loss. In implant and abutment connections with different angles, mechanical life performances may vary depending on static and dynamic load. These studies emphasize the importance of material research on different types of connections to improve dental implants' durability, homogeneous load distribution, and reliability. The abutment parts used in implant treatment are insufficient to distribute the load homogeneously against chewing pressure due to their materials and geometry. Non-uniform load distribution damages the abutment and the prosthetic crown, accelerating the wear process. This study aimed to create different abutment designs to improve dental implants' biomechanical performance and longevity. This study aimed to increase the mechanical durability of the implant-abutment connection by reducing stress concentrations in response to masticatory compression on the abutment in different directions and forces and to guarantee the long-term success of the implant system by providing a more homogeneous stress distribution. It aimed to apply different forces in the axial direction to these models in a simulation environment and to calculate and compare the deformation and stress load distribution. As a method, three-dimensional models of the parts used in implant treatments and forming the implant system were designed. Different abutment designs were created with these models. Taking the current material values used in implant treatments as a reference, finite element analysis (FEA) was performed by applying different axial loads to each implant system model in the ANSYS software (version 24.1). Comparative analysis graphs were prepared and interpreted for the stress values obtained after the applied load. This study evaluated the mechanical performance of different abutment models (A, B, C, D, and E) under a 100 N load using the Kruskal-Wallis test. The Kruskal-Wallis test showed significant differences between the groups (p < 0.001). The greatest difference was observed between models E and A (q' = 6.215), with a significant difference also found between models C and A (q' = 3.219, p < 0.005). Regarding stress values, the highest stress on the abutment was observed in Model B (97.4 MPa), while the lowest stress was observed in Model E (9.6 MPa). The crown exhibited the highest stress in Model B (22.7 MPa) and the lowest in Model E (17.3 MPa). The implant stress was highest in Model C (14.8 MPa) and lowest in Model B (11.3 MPa). The stress values for the cortical bone and cancellous bone were quite similar across the models, showing no significant differences. These findings indicate that the abutment design and material selection significantly impact mechanical performance. Among the implant systems created with five different abutment models, in which the existing abutment geometry was also compared, homogeneous and axial distribution of the load on the abutment was achieved, especially with viscoelastic and surface area increased abutment designs. Clinically, the inadequacy and limited mounting surface or geometry of the abutments used in today's implant treatment applications have led to different design searches. It was concluded that the designs in this study, which are considered alternatives to existing abutment models, contribute positively to the mechanical life of the abutment material, considering the von Mises stresses and directions. This study brings a new perspective to today's practices and offers an alternative to treatment practices.
Collapse
Affiliation(s)
- Mehmet Onur Yağır
- Electronics and Automation Program, Adapazarı Vocational School, Sakarya University, 54050 Sakarya, Turkey
- Dental Implant Design and Application Lab, Sakarya University, 54050 Sakarya, Turkey
| | - Şaduman Şen
- Metallurgical Materials Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Turkey
| | - Uğur Şen
- Metallurgical Materials Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Turkey
| |
Collapse
|
2
|
Mughal A, Gillani SMH, Ahmed S, Fatima D, Hussain R, Manzur J, Nawaz MH, Minhas B, Shoaib Butt M, Bodaghi M, Ur Rehman MA. 3D-printed polyether-ether ketone/carboxymethyl cellulose scaffolds coated with Zn-Mn doped mesoporous bioactive glass nanoparticles. J Mech Behav Biomed Mater 2024; 156:106581. [PMID: 38776740 DOI: 10.1016/j.jmbbm.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Patient-specific fabrication of scaffold/implant requires an engineering approach to manufacture the ideal scaffold. Herein, we design and 3D print scaffolds comprised of polyether-ether-ketone (PEEK) and sodium-carboxymethyl cellulose (Na-CMC). The fabricated scaffold was dip coated with Zn and Mn doped bioactive glass nanoparticles (Zn-Mn MBGNs). The synthesized ink exhibit suitable shear-thinning behavior for direct ink write (DIW) 3D printing. The scaffolds were crafted with precision, featuring 85% porosity, 0.3 mm layer height, and 1.5 mm/s printing speed at room temperature. Scanning electron microscopy images reveal a well-defined scaffold with an average pore size of 600 ± 30 μm. The energy dispersive X-ray spectroscopy analysis confirmed a well dispersed/uniform coating of Zn-Mn MBGNs on the PEEK/Na-CMC scaffold. Fourier transform infrared spectroscopy approved the presence of PEEK, CMC, and Zn-Mn MBGNs. The tensile test revealed a Young's modulus of 2.05 GPa. Antibacterial assays demonstrate inhibition zone against Staphylococcus aureus and Escherichia Coli strains. Chick Chorioallantoic Membrane assays also present significant angiogenesis potential, owing to the antigenic nature of Zn-Mn MBGNs. WST-8 cell viability assays depicted cell proliferation, with a 103% viability after 7 days of culture. This study suggests that the PEEK/Na-CMC scaffolds coated with Zn-Mn MBGNs are an excellent candidate for osteoporotic fracture treatment. Thus, the fabricated scaffold can offer multifaceted properties for enhanced patient outcomes in the bone tissue regeneration.
Collapse
Affiliation(s)
- Awab Mughal
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Syed Muneeb Haider Gillani
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Duaa Fatima
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan; School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Rabia Hussain
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Jawad Manzur
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Badar Minhas
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Shoaib Butt
- School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Muhammad Atiq Ur Rehman
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan.
| |
Collapse
|
3
|
Liang W, Zhou C, Zhang H, Bai J, Long H, Jiang B, Liu L, Xia L, Jiang C, Zhang H, Zhao J. Pioneering nanomedicine in orthopedic treatment care: a review of current research and practices. Front Bioeng Biotechnol 2024; 12:1389071. [PMID: 38860139 PMCID: PMC11163052 DOI: 10.3389/fbioe.2024.1389071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
A developing use of nanotechnology in medicine involves using nanoparticles to administer drugs, genes, biologicals, or other materials to targeted cell types, such as cancer cells. In healthcare, nanotechnology has brought about revolutionary changes in the treatment of various medical and surgical conditions, including in orthopedic. Its clinical applications in surgery range from developing surgical instruments and suture materials to enhancing imaging techniques, targeted drug delivery, visualization methods, and wound healing procedures. Notably, nanotechnology plays a significant role in preventing, diagnosing, and treating orthopedic disorders, which is crucial for patients' functional rehabilitation. The integration of nanotechnology improves standards of patient care, fuels research endeavors, facilitates clinical trials, and eventually improves the patient's quality of life. Looking ahead, nanotechnology holds promise for achieving sustained success in numerous surgical disciplines, including orthopedic surgery, in the years to come. This review aims to focus on the application of nanotechnology in orthopedic surgery, highlighting the recent development and future perspective to bridge the bridge for clinical translation.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
4
|
Maglio M, Fini M, Sartori M, Codispoti G, Borsari V, Dallari D, Ambretti S, Rocchi M, Tschon M. An Advanced Human Bone Tissue Culture Model for the Assessment of Implant Osteointegration In Vitro. Int J Mol Sci 2024; 25:5322. [PMID: 38791362 PMCID: PMC11120747 DOI: 10.3390/ijms25105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an advanced in vitro tissue culture model of osteointegration using human bone. Cubic samples of trabecular bone were harvested, as waste material, from hip arthroplasty; inner cylindrical defects were created and assigned to the following groups: (1) empty defects (CTRneg); (2) defects implanted with a cytotoxic copper pin (CTRpos); (3) defects implanted with standard titanium pins (Ti). Tissues were dynamically cultured in mini rotating bioreactors and assessed weekly for viability and sterility. After 8 weeks, immunoenzymatic, microtomographic, histological, and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, while Ti appears to have a trophic effect on bone. MicroCT and a histological analysis supported the results, with signs of matrix and bone deposition at the Ti implant site. Data suggest the reliability of the tested model in recreating the osteointegration process in vitro with the aim of reducing and refining in vivo preclinical models.
Collapse
Affiliation(s)
- Melania Maglio
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Scientific Direction, 40136 Bologna, Italy;
| | - Maria Sartori
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Giorgia Codispoti
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Veronica Borsari
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Dante Dallari
- IRCCS Istituto Ortopedico Rizzoli, Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, 40136 Bologna, Italy; (D.D.); (M.R.)
| | - Simone Ambretti
- Microbiology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Martina Rocchi
- IRCCS Istituto Ortopedico Rizzoli, Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, 40136 Bologna, Italy; (D.D.); (M.R.)
| | - Matilde Tschon
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| |
Collapse
|
5
|
Kelly MJ, Gelfand B, Radcliff K, Mo FF, Felix BA, Babak Kalantar S. Interim 1-Year Radiographic and Clinical Outcomes Following Anterior Cervical Discectomy and Fusion Using Hydroxyapatite-Infused Polyetheretherketone Interbody Cages. Int J Spine Surg 2024; 18:122-129. [PMID: 38378231 PMCID: PMC11292562 DOI: 10.14444/8585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND This is a multicenter observational registry analysis of 1-year radiographic and clinical outcomes following anterior cervical discectomy and fusion (ACDF) using hydroxyapatite (HA)-infused polyetheretherketone (PEEK) intervertebral cages. METHODS Radiographic and clinical outcome data were collected preoperatively and at 6 weeks, 3 months, 6 months, and 12 months postoperatively. To assess fusion, dynamic flexion-extension radiographs were independently evaluated with a validated method. Clinical outcomes were assessed using the following disease-specific measures: Neck Disability Index (NDI) and visual analog scale (VAS) for neck, left arm, and right arm pain. Patient satisfaction was also evaluated. RESULTS A total of 789 ACDF patients (men: 51.5%/women: 48.5%; mean body mass index: 29.9 kg/m2) were included at the time of analysis, and 1565 segments have been operated. Successful fusion was confirmed in 91.3% of all operated levels after 6 months and 92.2% after 12 months. Mean NDI scores improved significantly (P < 0.01) preoperatively (46.3, n = 771) to postoperatively (12 months: 25.2, n = 281). Consistently, mean VAS neck (preoperative: 64.2, n = 770; 12 months: 28.6, n = 278), VAS right arm (preoperative: 42.6, n = 766; 12 months: 20.4, n = 277), and VAS left arm (preoperative: 41.1, n = 768; 12 months: 20.8, n = 277) decreased significantly (P < 0.01). Patients reported high satisfaction rates after surgery with no significant changes in postoperative patient satisfaction between 6 weeks and 12 months (95.1%, n = 273). CONCLUSIONS ACDF with HA-infused PEEK cages demonstrates promising radiographic and clinical outcomes, supporting the potential benefits of incorporating HA into PEEK cages to enhance fusion rates and improve patient outcomes. CLINICAL RELEVANCE This study demonstrates a >90% fusion rate by level with reliable improvements in patient reported outcomes, along with a high rate of patient satisfaction, in a large patient cohort undergoing ACDF with HA-infused PEEK cages. LEVEL OF EVIDENCE 2 .
Collapse
Affiliation(s)
| | | | | | - Fred F Mo
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Brox A Felix
- Princeton University, Undergraduate Student, Princeton, NJ, USA
| | | |
Collapse
|
6
|
Gaikwad A, Parizi MK, Winkel A, Stiesch M. Osteoblast cell behavior on polyetheretherketone dental implant surfaces treated with different grit size aluminum oxide particles: An in vitro analysis. J Prosthet Dent 2024:S0022-3913(24)00148-3. [PMID: 38594087 DOI: 10.1016/j.prosdent.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/11/2024]
Abstract
STATEMENT OF PROBLEM The hydrophobic and bioinert nature of polyetheretherketone (PEEK) implants needs to be addressed for successful osseointegration. PURPOSE The purpose of this in vitro study was to evaluate the osteoblast cell behavior on PEEK implant surfaces treated with airborne-particle abrasion using different grit size aluminum oxide (Al2O3) particles. MATERIAL AND METHODS Disk-shaped specimens (n=96) were prepared from medical grade PEEK rods and were distributed into 4 groups (n=24) of untreated PEEK (PEEK 0), airborne-particle abrasion using 50-μm Al2O3 particles (PEEK 50), airborne-particle abrasion using 110-μm Al2O3 particles (PEEK 110), and airborne-particle abrasion using 150-μm Al2O3 particles (PEEK 150). The surface characteristics were assessed using water contact angle (WCA) measurements and scanning electron microscopy (SEM). MG-63 osteoblast cells were cultured, and the biocompatibility of PEEK was assessed using a CellTiter-blue cell viability assay and florescence staining at day 1, 3, and 7. The specimens were stained with Alizarin red to assess the osteoblast cell differentiation on day 10 and 14. The Levene test was used to test the homogeneity of variances. One-way and Welch ANOVA with post hoc corrections were used to assess the overall statistical significance of differences among the groups (α=.05). RESULTS The lowest mean WCA was demonstrated in PEEK 150 (49.25 ±5.51) and the highest in PEEK 0 (89.14 ±4.24) (P<.001). SEM images of PEEK 150 illustrated a more complex structure with a large area of globular outcroppings throughout the surface. PEEK 150 showed the highest cell metabolic activity at each time point with florescence staining showing a substantial cell confluence at day 3 and 7. Although PEEK 150 did not show a significant increase in cell proliferation, the number of cells attached was significantly higher than other groups (P<.05). PEEK 110 and 150 also showed a substantial increase in the extent of mineralization. CONCLUSIONS Airborne-particle abrasion using moderate Al2O3 grit size (110- or 150-μm) improved the hydrophilicity and osteoblast cell behavior on PEEK implants.
Collapse
Affiliation(s)
- Amit Gaikwad
- Doctoral Researcher, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany and Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Marjan Kheirmand Parizi
- Doctoral Researcher, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany and Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Andreas Winkel
- Postdoctoral Researcher, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany and Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.
| | - Meike Stiesch
- Professor and Head, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany and Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
7
|
Systermans S, Cobraiville E, Camby S, Meyer C, Louvrier A, Lie SA, Schouman T, Siciliano S, Beckers O, Poulet V, Ullmann N, Nolens G, Biscaccianti V, Nizet JL, Hascoët JY, Gilon Y, Vidal L. An innovative 3D hydroxyapatite patient-specific implant for maxillofacial bone reconstruction: A case series of 13 patients. J Craniomaxillofac Surg 2024; 52:420-431. [PMID: 38461138 DOI: 10.1016/j.jcms.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 03/11/2024] Open
Abstract
The study aimed to evaluate and discuss the use of an innovative PSI made of porous hydroxyapatite, with interconnected porosity promoting osteointegration, called MyBone Custom® implant (MBCI), for maxillofacial bone reconstruction. A multicentric cohort of 13 patients underwent maxillofacial bone reconstruction surgery using MBCIs for various applications, from genioplasty to orbital floor reconstruction, including zygomatic and mandibular bone reconstruction, both for segmental defects and bone augmentation. The mean follow-up period was 9 months (1-22 months). No infections, displacements, or postoperative fractures were reported. Perioperative modifications of the MBCIs were possible when necessary. Additionally, surgeons reported significant time saved during surgery. For patients with postoperative CT scans, osteointegration signs were visible at the 6-month postoperative follow-up control, and continuous osteointegration was observed after 1 year. The advantages and disadvantages compared with current techniques used are discussed. MBCIs offer new bone reconstruction possibilities with long-term perspectives, while precluding the drawbacks of titanium and PEEK. The low level of postoperative complications associated with the high osteointegration potential of MBCIs paves the way to more extensive use of this new hydroxyapatite PSI in maxillofacial bone reconstruction.
Collapse
Affiliation(s)
- Simon Systermans
- Department of Plastic and Maxillofacial Surgery, CHU, University of Liège, Liège, Belgium; Department of Oral and Maxillofacial Surgery, ZOL Genk, Genk, Belgium
| | | | - Séverine Camby
- Department of Plastic and Maxillofacial Surgery, CHU, University of Liège, Liège, Belgium
| | - Christophe Meyer
- Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU, Université de Franche-Comté, Besançon, France
| | - Aurélien Louvrier
- Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU, Université de Franche-Comté, Besançon, France
| | - Suen An Lie
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Thomas Schouman
- Department of Maxillofacial Surgery, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique des Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Sergio Siciliano
- Department of Stomatology and Maxillofacial Surgery, Clinique Sainte Elisabeth, Brussels, Belgium
| | - Olivier Beckers
- Department of Oral and Maxillofacial Surgery, ZOL Genk, Genk, Belgium
| | - Vinciane Poulet
- Department of Maxillofacial Surgery, Toulouse Purpan University Hospital, Toulouse, France
| | - Nicolas Ullmann
- Service de Chirurgie Maxillo-faciale et Stomatologie, Hôpital de Villeneuve Saint Georges, France
| | | | - Vincent Biscaccianti
- Research Institute of Civil Engineering and Mechanics (GeM), CNRS, Nantes, France
| | - Jean-Luc Nizet
- Department of Plastic and Maxillofacial Surgery, CHU, University of Liège, Liège, Belgium
| | - Jean-Yves Hascoët
- Research Institute of Civil Engineering and Mechanics (GeM), CNRS, Nantes, France
| | - Yves Gilon
- Department of Plastic and Maxillofacial Surgery, CHU, University of Liège, Liège, Belgium
| | - Luciano Vidal
- Research Institute of Civil Engineering and Mechanics (GeM), CNRS, Nantes, France; Department of Plastic and Reconstructive Surgery, Clinique Bretéché - ELSAN, Nantes, France.
| |
Collapse
|
8
|
Omatsu K, Yamawaki I, Taguchi Y, Tsumori N, Hashimoto Y, Umeda M. Surface modification affects human gingival epithelial cell behavior on polyetheretherketone surfaces. Dent Mater J 2024; 43:191-199. [PMID: 38246630 DOI: 10.4012/dmj.2023-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Gingival epithelial attachment to the abutment is important for the prevention of peri-implantitis. Polyetheretherketone (PEEK) has recently gained attention as an alternative material to titanium; however, it is biologically inert, which is disadvantageous for obtaining soft tissue sealing of the transmucosal part of the implant abutment. Therefore, ultraviolet (UV) irradiation, argon plasma irradiation, and buffing were selected as treatments to modify the PEEK surface. None of the treatments had any effect on the material's mechanical strength. The UV and plasma treatments did not significantly affect the surface morphology. Surface elemental analysis showed a decrease in carbon content and an increase in oxygen content and wettability for all treatments. Human gingival epithelial cell adhesion, proliferation, and the expression of adhesion proteins integrin β4 and laminin 332, were increased. Surface modification to PEEK was suggested to enhance cell activity on PEEK.
Collapse
Affiliation(s)
- Keiju Omatsu
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Isao Yamawaki
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Yoichiro Taguchi
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Norimasa Tsumori
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Yoshiya Hashimoto
- Department of Biomaterials, School of Dentistry, Osaka Dental University
| | - Makoto Umeda
- Department of Periodontology, School of Dentistry, Osaka Dental University
| |
Collapse
|
9
|
Xie M, Xiao GY, Song ZG, Lu YP. The Formation Process and Mechanism of the 3D Porous Network on the Sulfonated PEEK Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13585-13596. [PMID: 38445618 DOI: 10.1021/acsami.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A three-dimensional (3D) porous network can be prepared on the PEEK surface by sulfonation with enhanced osseointegration and antibacterial properties. However, few studies have been conducted on the formation mechanism of a 3D porous network. In this work, the surface and cross-sectional morphologies, chemical compositions, functional groups, surface wettability, and crystalline states of sulfonated PEEK were investigated at different sulfonation times and coagulant concentrations. The results show that the number of nodular structures and broken fibers on the sulfonated PEEK surface as well as the size of macrovoids in the cross sections increase with increasing sulfonation times when water is used as a coagulant. In contrast, dilute sulfuric acid as a coagulant can inhibit the formation of surface porous structures and macrovoids in the cross sections. Moreover, all of the sulfonated PEEK samples have the same chemical compositions but exhibit better hydrophilicity as the number of microsized pores decreases. It is proposed that non-solvent-induced phase separation (NIPS) occurs during the sulfonation process, and the formation mechanism of surface and cross-sectional morphologies is discussed. Furthermore, it is assumed that the air is trapped in the microsized pores, leaving the surface of the 3D porous network in the Cassie-wetting state. All of these preliminary results throw light on the nature of the sulfonation process and may guide further modification of the structures of sulfonated PEEK.
Collapse
Affiliation(s)
- Ming Xie
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Gui-Yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Zhi-Gang Song
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yu-Peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
10
|
An J, Shi X, Zhang J, Qi L, Xue W, Nie X, Yun Z, Zhang P, Liu Q. Dual aldehyde cross-linked hyaluronic acid hydrogels loaded with PRP and NGF biofunctionalized PEEK interfaces to enhance osteogenesis and vascularization. Mater Today Bio 2024; 24:100928. [PMID: 38179432 PMCID: PMC10765491 DOI: 10.1016/j.mtbio.2023.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Polyetheretherketone (PEEK) material has become a potential bone replacement material due to its elastic modulus, which is close to that of human bone, and stable chemical properties. However, its biological inertness has hindered its clinical application. To improve the biological inertia of PEEK material, a hyaluronic acid (HA) hydrogel coating loaded with platelet-rich plasma (PRP) and nerve growth factor (NGF) was constructed on the surface of PEEK material in this study. After the hybrid hydrogel coating was constructed, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), degradation tests, and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate its characteristics and biological properties. The osteogenic and angiogenic potentials were also investigated in vitro and in vivo. Our results showed that the HA hydrogel loaded with RPP and NGF on the PEEK surface degraded slowly and could sustainably release various growth factors, including NGF. The results of in vitro tests showed that the hybrid hydrogel on the surface of PEEK effectively promoted osteogenesis and angiogenesis. The in vivo experiment also confirmed that the PEEK surface hydrogel could promote osseointegration of the implant and the integration of new bone and neovascularization. Our results suggest that the cross-linked hyaluronic acid hydrogel loaded with PRP and NGF can significantly improve the biological inertia of PEEK material, endowing PEEK material with good osteogenic and angiogenic ability.
Collapse
Affiliation(s)
- Junyan An
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
- The Third Hospital of Jilin University, Department of Neurosurgery, Changchun, 130031, China
| | - Xiaotong Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- The First Hospital of Jilin University, Department of Orthopedics, Changchun, 130021, China
| | - Jun Zhang
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Le Qi
- The Yunlong Orthopedic Hospital of Baotou, Department of Orthopedics, Baotou, 014010, China
| | - Wu Xue
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Xinyu Nie
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Zhihe Yun
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qinyi Liu
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| |
Collapse
|
11
|
Pfnür A, Tosin D, Petkov M, Sharon O, Mayer B, Wirtz CR, Knoll A, Pala A. Exploring complications following cranioplasty after decompressive hemicraniectomy: A retrospective bicenter assessment of autologous, PMMA and CAD implants. Neurosurg Rev 2024; 47:72. [PMID: 38285230 PMCID: PMC10824806 DOI: 10.1007/s10143-024-02309-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
Cranioplasty (CP) after decompressive hemicraniectomy (DHC) is a common neurosurgical procedure with a high complication rate. The best material for the repair of large cranial defects is unclear. The aim of this study was to evaluate different implant materials regarding surgery related complications after CP. Type of materials include the autologous bone flap (ABF), polymethylmethacrylate (PMMA), calcium phosphate reinforced with titanium mesh (CaP-Ti), polyetheretherketone (PEEK) and hydroxyapatite (HA). A retrospective, descriptive, observational bicenter study was performed, medical data of all patients who underwent CP after DHC between January 1st, 2016 and December 31st, 2022 were analyzed. Follow-up was until December 31st, 2023. 139 consecutive patients with a median age of 54 years who received either PMMA (56/139; 40.3%), PEEK (35/139; 25.2%), CaP-Ti (21/139; 15.1%), ABF (25/139; 18.0%) or HA (2/139; 1.4%) cranial implant after DHC were included in the study. Median time from DHC to CP was 117 days and median follow-up period was 43 months. Surgical site infection was the most frequent surgery-related complication (13.7%; 19/139). PEEK implants were mostly affected (28.6%; 10/35), followed by ABF (20%; 5/25), CaP-Ti implants (9.5%; 2/21) and PMMA implants (1.7%, 1/56). Explantation was necessary for 9 PEEK implants (25.7%; 9/35), 6 ABFs (24.0%; 6/25), 3 CaP-Ti implants (14.3%; 3/21) and 4 PMMA implants (7.1%; 4/56). Besides infection, a postoperative hematoma was the most common cause. Median surgical time was 106 min, neither longer surgical time nor use of anticoagulation were significantly related to higher infection rates (p = 0.547; p = 0.152 respectively). Ventriculoperitoneal shunt implantation prior to CP was noted in 33.8% (47/139) and not significantly associated with surgical related complications. Perioperative lumbar drainage, due to bulging brain, inserted in 38 patients (27.3%; 38/139) before surgery was protective when it comes to explantation of the implant (p = 0.035). Based on our results, CP is still related to a relatively high number of infections and further complications. Implant material seems to have a high effect on postoperative infections, since surgical time, anticoagulation therapy and hydrocephalus did not show a statistically significant effect on postoperative complications in this study. PEEK implants and ABFs seem to possess higher risk of postoperative infection. More biocompatible implants such as CaP-Ti might be beneficial. Further, prospective studies are necessary to answer this question.
Collapse
Affiliation(s)
- A Pfnür
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - D Tosin
- Department of Neurosurgery, University of Ulm, Lindenallee 2, 89312, Günzburg, Germany
| | - M Petkov
- Department of Neurosurgery, University of Ulm, Lindenallee 2, 89312, Günzburg, Germany
| | - O Sharon
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - B Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Schwabstraße 13, 89075, Ulm, Germany
| | - C R Wirtz
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
- Department of Neurosurgery, University of Ulm, Lindenallee 2, 89312, Günzburg, Germany
| | - A Knoll
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - A Pala
- Department of Neurosurgery, University of Ulm, Lindenallee 2, 89312, Günzburg, Germany
| |
Collapse
|
12
|
Scott-Young M, Nielsen D, Riar S. Fundamentals of Mechanobiology and Potential Applications in Spinal Fusion. Int J Spine Surg 2023; 17:S61-S74. [PMID: 38135446 PMCID: PMC10753328 DOI: 10.14444/8562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Mechanobiology can help optimize spinal fusion by providing insights into the mechanical environment required for bone healing and fusion. This includes understanding the optimal loading conditions, the mechanical properties of implanted materials, and the effects of mechanical stimuli on the cells involved in bone formation. The present article reviews the evidence for surface technologies and implant modification of spinal cages in enhancing spinal fusion. METHODS Databases used included Embase, MEDLINE, Springer, and Cochrane Library. Relevant articles were identified using specific keywords and search fields. Only systematic reviews, meta-analyses, review articles, and original research articles in English were included. Two researchers independently performed the search and selection process. A flowchart of the search strategy and study selection method is provided in the article. RESULTS The studies indicate that surface modification can significantly enhance osseointegration and interbody fusion by promoting cellular adhesion, proliferation, differentiation, and mineralization. Various surface modification techniques such as coating, etching, nanotopography, and functionalization achieve this. Similarly, implant material modification can improve implant stability, biocompatibility, and bioactivity, leading to better fusion outcomes. Mechanobiology plays a vital role in this process by influencing the cellular response to mechanical cues and promoting bone formation. CONCLUSIONS The studies reviewed indicate that surface technologies and implant material modification are promising approaches for improving the success of spinal cage fusion. Mechanobiology is critical in this process by influencing the cellular response to mechanical signals and promoting bone growth.
Collapse
Affiliation(s)
- Matthew Scott-Young
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
- Gold Coast Spine, Bond University, Gold Coast, Queensland, Australia
| | - David Nielsen
- Gold Coast Spine, Bond University, Gold Coast, Queensland, Australia
| | - Sukhman Riar
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
- Gold Coast Spine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
13
|
Shi X, Wang Z, Guo M, Wang Y, Bi Z, Li D, Zhang P, Liu J. PRP coating on different modified surfaces promoting the osteointegration of polyetheretherketone implant. Front Bioeng Biotechnol 2023; 11:1283526. [PMID: 38026857 PMCID: PMC10655129 DOI: 10.3389/fbioe.2023.1283526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Polyetheretherketone (PEEK) material implants have been applied more and more clinically recently. In order to increase the osteogenic activity of PEEK material, the microstructure change of the material surface and the construction of functional microcoatings have become a hot research topic. This study investigated the ability of PEEK surfaces modified by different methods to carry Platelet-rich plasma (PRP) and the osteogenic ability of different PEEK microstructures after carrying PRP in vivo/in vitro. Methods: In this study, PEEK surfaces were modified by sulfuric acid, gaseous sulfur trioxide and sandpaper. Next, PRP from SD rats was prepared and incubated on PEEK material with different surface microstructures. Lactate dehydrogenase test, scanning electron microscope and Elisa assay was used to evaluate adhesion efficiency of PRP. Then in vitro tests such as CCK-8, ALP staining, ARS staining and RT-qPCR et al were used to further evaluate osteogenesis ability of the PRP coating on PEEK surface. Finally, The tibia defects of SD rats were established, and the new bone was evaluated by Micro-CT, HE staining, and immunofluorescence staining. Results: The sandpaper-polished PEEK with the strongest PRP carrying capacity showed the best osteogenesis. Our study found that the modified PEEK surface with PRP coating has excellent osteogenic ability and provided the basis for the interface selection of PRP for the further application of PEEK materials. Discussion: Among the three PEEK modified surfaces, due to the most PRP carrying and the strongest osteogenic ability in vitro/vivo, the frosted surface was considered to be the most suitable surface for the preparation of PRP coating.
Collapse
Affiliation(s)
- Xiaotong Shi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiguo Bi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Dongsong Li
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jianguo Liu
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| |
Collapse
|
14
|
Zheng W, Wu D, Zhang Y, Luo Y, Yang L, Xu X, Luo F. Multifunctional modifications of polyetheretherketone implants for bone repair: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213607. [PMID: 37651963 DOI: 10.1016/j.bioadv.2023.213607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Polyetheretherketone (PEEK) has emerged as a highly promising orthopedic implantation material due to its elastic modulus which is comparable to that of natural bone. This polymer exhibits impressive properties for bone implantation such as corrosion resistance, fatigue resistance, self-lubrication and chemical stability. Significantly, compared to metal-based implants, PEEK implants have mechanical properties that are closer to natural bone, which can mitigate the "stress shielding" effect in bone implantation. Nevertheless, PEEK is incapable of inducing osteogenesis due to its bio-inert molecular structure, thereby hindering the osseointegration process. To optimize the clinical application of PEEK, researchers have been working on promoting its bioactivity and endowing this polymer with beneficial properties, such as antibacterial, anti-inflammatory, anti-tumor, and angiogenesis-promoting capabilities. Considering the significant growth of research on PEEK implants over the past 5 years, this review aims to present a timely update on PEEK's modification methods. By highlighting the latest advancements in PEEK modification, we hope to provide guidance and inspiration for researchers in developing the next generation bone implants and optimizing their clinical applications.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongxu Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|