1
|
Xu J, Sivakumar C, Ryan CW, Rao RC. A novel interaction between RNA m 6A methyltransferase METTL3 and RREB1. Biochem Biophys Res Commun 2024; 733:150668. [PMID: 39278095 DOI: 10.1016/j.bbrc.2024.150668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Regulation of gene expression is achieved through the modulation of regulatory inputs both pre- and post-transcriptionally. Methyltransferase-like 3 (METTL3) is a key player in pre-mRNA processing, actively catalyzing N6-methyladenosine (m6A). Among the most enriched mRNA targets of METTL3 is the Ras Responsive Element Binding Protein 1 (RREB1), a transcription factor which functions to govern cell fate, proliferation and DNA repair. Here, we show a novel interaction between METTL3 and RREB1. Further examination of this interaction indicates that METTL3's N-terminus is the primary interacting domain. Our findings uncover a novel interacting partner of METTL3, providing further insights into METTL3's regulatory network.
Collapse
Affiliation(s)
- Jing Xu
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Charukesi Sivakumar
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Charles W Ryan
- Medical Scientist Training Program, University of Michigan, Medical School, Ann Arbor, MI, 48105, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, 48105, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48105, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48105, USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48105, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, 48105, USA; A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, 48105, USA; Section of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
2
|
Jiang X, Zhang W, Xie S. METTL3 inhibits microglial pyroptosis in neonatal hypoxia-ischemia encephalopathy by regulating GPR39 expression in an m6A-HuR-dependent manner. Neuroscience 2024:S0306-4522(24)00549-9. [PMID: 39461660 DOI: 10.1016/j.neuroscience.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Neonatal hypoxia-ischemia encephalopathy (HIE) is a significant reason for neonatal mortality and prolonged disability. We have previously revealed that GPR39 activation attenuates neuroinflammation in a neonatal HIE rat model. This study aimed to investigate whether GPR39 affected microglial pyroptosis post-HIE. METHODS A neonatal rat model of HIE and a microglia cell model of oxygen-glucose deprivation (OGD) were established. Neuronal loss and cerebral infarction were assessed by using TTC, H&E staining, and Nissl staining. Pyroptosis was evaluated with western blot, LDH assay kit, ELISA, and flow cytometry. Total m6A level and GPR39 m6A modification were determined using m6A dot blot and MeRIP. The interaction between METTL3/HuR/GSK3β and GPR39 was analyzed by performing molecular interaction experiments. GPR39 mRNA stability was examined with actinomycin D. RESULTS The level of GPR39 was increased in neonatal HIE rats and OGD-treated microglia. Brain injury and neuronal loss were significantly increased in the HIE model when GPR39 was knocked down. GPR39 knockdown aggravated NLRP3 inflammasome-mediated microglial pyroptosis. METTL3 upregulated GPR39 expression in an m6A-dependent manner. METTL3 enhanced the interaction of HuR and GPR39. In OGD-exposed microglia, METTL3 elevated GPR39 expression and mRNA stability, which declined after HuR depletion. METTL3 knockdown promoted microglial pyroptosis, which was reversed by GPR39 agonist. Furthermore, microglial pyroptosis was inhibited by GPR39 upregulation, but the outcome was reverted by GSK3β activator SNP. CONCLUSION METTL3 inhibits microglial pyroptosis in neonatal HIE via regulating m6A-HuR dependent stabilization of GPR39, which contributes to therapeutics development for neonatal HIE.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha 410008, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha 410008, China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
3
|
Kanarik M, Liiver K, Norden M, Teino I, Org T, Laugus K, Shimmo R, Karelson M, Saarma M, Harro J. RNA m 6A methyltransferase activator affects anxiety-related behaviours, monoamines and striatal gene expression in the rat. Acta Neuropsychiatr 2024:1-16. [PMID: 39380240 DOI: 10.1017/neu.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Modification of mRNA by methylation is involved in post-transcriptional regulation of gene expression by affecting the splicing, transport, stability and translation of mRNA. Methylation of adenosine at N6 (m6A) is one of the most common and important cellular modification occurring in the mRNA of eukaryotes. Evidence that m6A mRNA methylation is involved in regulation of stress response and that its dysregulation may contribute to the pathogenesis of neuropsychiatric disorders is accumulating. We have examined the acute and subchronic (up to 18 days once per day intraperitoneally) effect of the first METTL3/METTL14 activator compound CHMA1004 (methyl-piperazine-2-carboxylate) at two doses (1 and 5 mg/kg) in male and female rats. CHMA1004 had a locomotor activating and anxiolytic-like profile in open field and elevated zero-maze tests. In female rats sucrose consumption and swimming in Porsolt's test were increased. Nevertheless, CHMA1004 did not exhibit strong psychostimulant-like properties: CHMA1004 had no effect on 50-kHz ultrasonic vocalizations except that it reduced the baseline difference between male and female animals, and acute drug treatment had no effect on extracellular dopamine levels in striatum. Subchronic CHMA1004 altered ex vivo catecholamine levels in several brain regions. RNA sequencing of female rat striata after subchronic CHMA1004 treatment revealed changes in the expression of a number of genes linked to dopamine neuron viability, neurodegeneration, depression, anxiety and stress response. Conclusively, the first-in-class METTL3/METTL14 activator compound CHMA1004 increased locomotor activity and elicited anxiolytic-like effects after systemic administration, demonstrating that pharmacological activation of RNA m6A methylation has potential for neuropsychiatric drug development.
Collapse
Affiliation(s)
- Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
| | - Kristi Liiver
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
| | - Marianna Norden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Indrek Teino
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Tartumaa, Estonia
| | - Tõnis Org
- Institute of Genomics, University of Tartu, Tartu, Tartumaa, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
| | - Mati Karelson
- Division of Molecular Technology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
| |
Collapse
|
4
|
Zhang M, Gou Z, Qu Y, Su X. The indispensability of methyltransferase-like 3 in the immune system: from maintaining homeostasis to driving function. Front Immunol 2024; 15:1456891. [PMID: 39416774 PMCID: PMC11479892 DOI: 10.3389/fimmu.2024.1456891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Methyltransferase-like 3(METTL3), recognized as the primary N6-methyladenosine methyltransferase, influences cellular functions such as proliferation, migration, invasion, differentiation, and fate determination by regulating gene expression post-transcriptionally. Recent studies have highlighted the indispensability of METTL3 in various immune cells such as hematopoietic stem/progenitor cells, innate immune cells (monocytes, macrophages, dendritic cells), and adaptive immune cells (thymic epithelial cell, T cells, natural killer cells). However, a comprehensive summary and analysis of these findings to elucidate the relationship between METTL3 and the immune system is yet to be undertaken. Therefore, in this review, we systematically collate reports detailing the mechanism underlying the role of METTL3 in regulating various immune processes and examine the modification of METTL3 and its potential implications. This review suggests that METTL3 plays an essential role in the immune system, ranging from maintaining homeostasis to regulating functions. Collectively, this review provides a comprehensive analysis of the relationship between METTL3 and the immune system, serving convenient researchers to understand the frontiers of immunological research and facilitate future clinical applications.
Collapse
Affiliation(s)
- Mingfu Zhang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine & the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Yang Y, Chen M, Lan R, Gong H. LINC01410 accelerates the invasion of trophoblast cells by modulating METTL3/Fas. Mol Biol Rep 2024; 51:895. [PMID: 39115693 PMCID: PMC11310249 DOI: 10.1007/s11033-024-09834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND Insufficient trophoblast invasion, culminating in suboptimal uterine spiral artery remodeling, is pinpointed as a pivotal contributor to preeclampsia (PE) development. LINC01410 has been documented to be increased in various neoplasms, and is significantly associated with the invasive capabilities of tumor cells. Nonetheless, its function and the mechanisms in the pathogenesis of PE require further investigation. METHODS AND RESULTS LINC01410 and methyltransferase-like 3 (METTL3) were ectopically expressed in HTR-8/Svneo cells via lentiviral transduction. Subsequently, the cells' invasive capabilities and apoptosis rates were evaluated employing Transwell assays and flow cytometry, respectively. The interplay between LINC01410 and METTL3, alongside the m6A methylation of FAS, was probed through RNA immunoprecipitation (RIP). Additionally, the association between FAS and METTL3 was elucidated via Coimmunoprecipitation (Co-IP) assays. The protein level of NF-κB, BAX, and BCL-2 in LINC01410-overexpressing cells was detected by Western blot. Our findings revealed that LINC01410 elevation increased the invasive ability of HTR-8/Svneo cells, directly impacting METTL3 then leading to its reduced expression. Conversely, heightened METTL3 expression mitigated invasiveness while enhancing apoptosis in these cells. Moreover, METTL3's interaction with FAS led to increased FAS expression, subject to m6A methylation. A surge in LINC01410 markedly decreased both mRNA and protein levels of FAS. Furthermore, LINC01410 overexpression significantly reduced NF-κB and BAX protein levels while augmenting BCL-2. CONCLUSIONS Upregulation of LINC01410 expression promotes trophoblast cell invasion by inhibiting FAS levels through modified m6A alteration and suppressing the NF-κB pathway. These findings underscore the pivotal role of LINC01410 in regulating trophoblast cell invasion and propose it as a promising therapeutic strategy for preventing or alleviating PE. This offers valuable insights for the clinical treatment of PE, for which definitive targeted therapy methods are currently lacking.
Collapse
Affiliation(s)
- Yang Yang
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiu hua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Meihua Chen
- Hainan Medical University, 3 Xue yuan Road, Long hua District, Haikou, Hainan, 571199, China
| | - Ruihong Lan
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiu hua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Humin Gong
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiu hua Road, Xiuying District, Haikou, Hainan, 570311, China.
| |
Collapse
|
6
|
Yang L, Qi G, Rao W, Cen Y, Chen L, Li W, Pang Y. Aluminum causes irreversible damage to the development of hippocampal neurons by regulating m6A RNA methylation. Toxicol Lett 2024; 399:34-42. [PMID: 39009234 DOI: 10.1016/j.toxlet.2024.07.908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
The underlying mechanism of the aluminum (Al) on neurotoxicity remains unclear. We explored whether the impairment of hippocampal neurons induced by developmental Al exposure was associated with the m6A RNA modification in mice. In this study, the pregnant female mice were administered 4 mg/mL aluminum-lactate from gestational day (GD) 6 to postnatal day (PND) 21. On PND 21, 10 offsprings per group were euthanized by exsanguination from the abdominal aorta after deep anesthetization. The other offsprings which treated with aluminum-lactate on maternal generation were divided into two groups and given 0 (PND60a) and 4 mg/mL (PND60b) aluminum-lactate in their drinking water until PND 60. Significant neuronal injuries of hippocampus as well as a reduction in the m6A RNA modification and the expression of methylase were observed at PND 21 and PND 60a mice. The results indicated that Al-induced developmental neurotoxicity could persist into adulthood despite no sustained Al accumulation. m6A RNA modification had a crucial role in developmental neurotoxicity induced by Al. In addition, Al exposure during the embryonic to adult stages can cause more severe nerve damage and decline of m6A RNA modification. Collectively, these results suggest that the mechanism underlying Al-induced neurotoxicity appears to involve m6A RNA modification.
Collapse
Affiliation(s)
- Lingling Yang
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Guangzi Qi
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Key Laboratory of Research on Environment and Population Health in aluminium mining areas (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Wenlian Rao
- College of Basic Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yufang Cen
- College of Basic Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenxue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510080, China.
| | - Yaqin Pang
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Key Laboratory of Research on Environment and Population Health in aluminium mining areas (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China.
| |
Collapse
|
7
|
Xiao D, Zhang M, Qu Y, Su X. Functions of methyltransferase-like 3 in breast cancer: pathogenesis, drug resistance, and therapeutic target. Breast Cancer Res 2024; 26:110. [PMID: 38961497 PMCID: PMC11223289 DOI: 10.1186/s13058-024-01869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Breast cancer (BC) is a highly prevalent malignancy worldwide, with complex pathogenesis and treatment challenges. Research reveals that methyltransferase-like 3 (METTL3) is widely involved in the pathogenesis of several tumors through methylation of its target RNAs, and its role and mechanisms in BC are also extensively studied. In this review, we aim to provide a comprehensive interpretation of available studies and elucidate the relationship between METTL3 and BC. This review suggests that high levels of METTL3 are associated with the pathogenesis, poor prognosis, and drug resistance of BC, suggesting METTL3 as a potential diagnostic or prognostic biomarker and therapeutic target. Collectively, this review provides a comprehensive understanding of how METTL3 functions through RNA methylation, which provides a valuable reference for future fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Dongqiong Xiao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China
| | - Mingfu Zhang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China.
| |
Collapse
|
8
|
Browning JL, Wilson KA, Shandra O, Wei X, Mahmutovic D, Maharathi B, Robel S, VandeVord PJ, Olsen ML. Applying Proteomics and Computational Approaches to Identify Novel Targets in Blast-Associated Post-Traumatic Epilepsy. Int J Mol Sci 2024; 25:2880. [PMID: 38474127 DOI: 10.3390/ijms25052880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic brain injury (TBI) can lead to post-traumatic epilepsy (PTE). Blast TBI (bTBI) found in Veterans presents with several complications, including cognitive and behavioral disturbances and PTE; however, the underlying mechanisms that drive the long-term sequelae are not well understood. Using an unbiased proteomics approach in a mouse model of repeated bTBI (rbTBI), this study addresses this gap in the knowledge. After rbTBI, mice were monitored using continuous, uninterrupted video-EEG for up to four months. Following this period, we collected cortex and hippocampus tissues from three groups of mice: those with post-traumatic epilepsy (PTE+), those without epilepsy (PTE-), and the control group (sham). Hundreds of differentially expressed proteins were identified in the cortex and hippocampus of PTE+ and PTE- relative to sham. Focusing on protein pathways unique to PTE+, pathways related to mitochondrial function, post-translational modifications, and transport were disrupted. Computational metabolic modeling using dysregulated protein expression predicted mitochondrial proton pump dysregulation, suggesting electron transport chain dysregulation in the epileptic tissue relative to PTE-. Finally, data mining enabled the identification of several novel and previously validated TBI and epilepsy biomarkers in our data set, many of which were found to already be targeted by drugs in various phases of clinical testing. These findings highlight novel proteins and protein pathways that may drive the chronic PTE sequelae following rbTBI.
Collapse
Affiliation(s)
- Jack L Browning
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kelsey A Wilson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Oleksii Shandra
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Xiaoran Wei
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Dzenis Mahmutovic
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Biswajit Maharathi
- Neurology & Rehabilitation, University of Illinois, Chicago, IL 60612, USA
| | - Stefanie Robel
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Salem Veteran Affairs Medical Center, Salem, VA 24153, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Su X, Qu Y, Mu D. Methyltransferase-like 3 modifications of RNAs: Implications for the pathology in the endocrine system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167010. [PMID: 38176459 DOI: 10.1016/j.bbadis.2023.167010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Methyltransferase-like 3 (METTL3) is the most well-known element of N6-methyladenosine modification on RNAs. METTL3 deposits a methyl group onto target RNAs to modify their expression, ultimately regulating various physiological and pathological events. Numerous studies have suggested the significant role of METTL3 in endocrine dysfunction and related disorders. However, reviews that summarize and interpret these studies are lacking. In this review, we systematically analyze such studies, including obesity, type 2 diabetes mellitus (T2DM), T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. This review indicates that METTL3 contributes remarkably to the endocrine dysfunction and progression of obesity, T2DM, T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. In conclusion, this review provides a comprehensive interpretation of the mechanism via which METTL3 functions on RNAs and regulates various endocrine dysfunction events and suggest potential associated correlations. Our review, thus, provides a valuable reference for further fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Su X, Lu R, Qu Y, Mu D. Diagnostic and therapeutic potentials of methyltransferase-like 3 in liver diseases. Biomed Pharmacother 2024; 172:116157. [PMID: 38301420 DOI: 10.1016/j.biopha.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Methyltransferase-like 3 (METTL3), a component of the RNA N6-methyladenosine (m6A) modification with a specific catalytic capacity, controls gene expression by actively regulating RNA splicing, nuclear export, stability, and translation, determines the fate of RNAs and assists in regulating biological processes. Studies conducted in recent decades have demonstrated the pivotal regulatory role of METTL3 in liver disorders, including hepatic lipid metabolism disorders, liver fibrosis, nonalcoholic steatohepatitis, and liver cancer. Although METTL3's roles in these diseases have been extensively investigated, the regulatory network of METTL3 and its potential applications remain unexplored. In this review, we provide a comprehensive overview of the roles and mechanisms of METTL3 implicated in these diseases, establish a regulatory network of METTL3, evaluate the potential for targeting METTL3 for diagnosis and treatment, and discuss avenues for future development and research. We found relatively upregulated expressions of METTL3 in these liver diseases, demonstrating its potential as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China
| | - Ruifeng Lu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China.
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China.
| |
Collapse
|
11
|
Su X, Lu R, Qu Y, Mu D. Methyltransferase-like 3 mediated RNA m 6 A modifications in the reproductive system: Potentials for diagnosis and therapy. J Cell Mol Med 2024; 28:e18128. [PMID: 38332508 PMCID: PMC10853593 DOI: 10.1111/jcmm.18128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Several studies have highlighted the functional indispensability of methyltransferase-like 3 (METTL3) in the reproductive system. However, a review that comprehensively interprets these studies and elucidates their relationships is lacking. Therefore, the present work aimed to review studies that have investigated the functions of METTL3 in the reproductive system (including spermatogenesis, follicle development, gametogenesis, reproductive cancer, asthenozoospermia and assisted reproduction failure). This review suggests that METTL3 functions not only essential for normal development, but also detrimental in the occurrence of disorders. In addition, promising applications of METTL3 as a diagnostic or prognostic biomarker and therapeutic target for reproductive disorders have been proposed. Collectively, this review provides comprehensive interpretations, novel insights, potential applications and future perspectives on the role of METTL3 in regulating the reproductive system, which may be a valuable reference for researchers and clinicians.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Ruifeng Lu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| |
Collapse
|
12
|
Zeng Y, Wang F, Li S, Song B. Regulatory Network of Methyltransferase-Like 3 in Stem Cells: Mechanisms and Medical Implications. Cell Transplant 2024; 33:9636897241282792. [PMID: 39466679 PMCID: PMC11528761 DOI: 10.1177/09636897241282792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024] Open
Abstract
Stem cells have the potential to replace defective cells in several human diseases by depending on their self-renewal and differentiation capacities that are controlled by genes. Currently, exploring the regulation mechanism for stem cell capacities from the perspective of methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine modification has obtained great advance, which functions by regulating target genes post-transcriptionally. However, reviews that interpret the regulatory network of METTL3 in stem cells are still lacking. In this review, we systematically analyze the available publications that report the role and mechanisms of METTL3 in stem cells, including embryonic stem cells, pluripotent stem cells, mesenchymal stem cells, and cancer stem cells. The analysis of such publications suggests that METTL3 controls stem cell fates and is indispensable for maintaining its normal capacities. However, its dysfunction induces various pathologies, particularly cancers. To sum up, this review suggests METTL3 as a key regulator for stem cell capacities, with further exploration potential in translational and clinical fields. In conclusion, this review promotes the understanding of how METTL3 functions in stem cells, which provides a valuable reference for further fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Fengyang Wang
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Silu Li
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Bin Song
- Department of Nephrology, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| |
Collapse
|
13
|
Chen Y, Han Y, Liu L, Liu M, Lin J, Tang Y, Guo S, He R, Wu Q. N 6-Methyladenosine methylase METTL3 contributes to neuropathic pain by epigenetic silencing of mu opioid receptor. Behav Brain Res 2023; 452:114592. [PMID: 37482304 DOI: 10.1016/j.bbr.2023.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
We aimed at exploring the role and mechanism of METTL3-mediated m6A modification in neuropathic pain. Male Sprague-Dawley rats were randomly divided into four groups: Sham operation group (Sham group), chronic constriction injury (CCI) of the sciatic nerve model group (NPP group), intrathecal injection of virus down-regulated METTL3 + CCI model group (M3 + NPP group) and intrathecal injection of negative control virus + CCI model group (Scr + NPP group). The M3 + NPP group and the Scr + NPP group were intrathecally injected with virus nineteen days before operation. The paw withdrawal mechanical thresholds and paw withdrawal latency were respectively recorded one day before operation, three days, five days and seven days after operation. The rats were sacrificed on the seventh day after operation, and their spinal cord tissues were taken. The frozen sections of rats were performed to observe the expression of green fluorescent protein of the virus. The methylation level of RNA, the protein expression of m6A-related enzyme (METTL3) and mu opioid receptor (MOR) in spinal cord tissues of the four groups were measured. Downregulation of METTL3 had no effect on the overall methylation level of the spinal cord, but it could regulate the methylation level of the OPRM1 gene RNA encoding MOR, partially restore the expression of MOR, and relieve pain in rats. In the process of NPP, METTL3 may inhibit the expression of MOR by regulating the methylation level of OPRM1 gene RNA encoding MOR, and ultimately promote the occurrence and development of NPP.
Collapse
Affiliation(s)
- Yao Chen
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Yakun Han
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Li Liu
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Minqiang Liu
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Jing Lin
- Central Sterile Supply Department, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Yi Tang
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Shanshan Guo
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Renliang He
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China.
| | - Qiang Wu
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China.
| |
Collapse
|