1
|
Lorentzos M, Parsons JA, Jones KJ, Servais L. Early diagnosis of Duchenne muscular dystrophy - A Treat-NMD international workshop. Neuromuscul Disord 2024; 45:104467. [PMID: 39427485 DOI: 10.1016/j.nmd.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
The diagnosis of Duchenne muscular dystrophy (DMD) is significant at any stage, however an early diagnosis in a presymptomatic or very early phase of DMD, offers unique opportunities and challenges for families and health care providers. Currently, there is limited evidence as to the optimal models of care during this stage of the condition.. To address this, in 2023, Treat-NMD facilitated the Early Diagnosis for DMD project; bringing together 42 experts from across Europe, the US and Australasia, including health care professionals, researchers, and people with lived experience to discuss the complexities of an early or newborn diagnosis of DMD, and provide recommendations regarding approaches to multidisciplinary care. A series of virtual meetings followed by a hybrid workshop resulted in broad recommendations to support clinicians in caring for children and families following an early diagnosis of DMD. The workshop did not define a cut-off for early diagnosis, however much of the discussion focused on diagnoses that occurred prior to 2 years. There is recognition that boys may first present with non-motor symptoms, such as speech delay or neurodevelopmental issues that are secondary to their dystrophinopathy, and therefore this report refers reflects that infants with DMD may be presymptomatic or early symptomatic.
Collapse
Affiliation(s)
- M Lorentzos
- Department of Neurology and Neurosurgery, The Sydney Children's Hospitals Network, Sydney, New South Wales, Australia; Faculty of Medicine and Health, Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | - J A Parsons
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - K J Jones
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Department of Clinical Genetics, The Sydney Children's Hospitals Network,, Sydney, New South Wales, Australia
| | - L Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK; Department of Pediatrics, Division of Child Neurology Reference Center for Neuromuscular Disease, University Hospital of Liège & University of La Citadelle, Liège, Belgium; Division of Child Neurology, Department of Pediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital Liège and University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Diehl E, O'Neill M, Gray L, Schwaede A, Kuntz N, Rao VK. Prevalence of Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder in Individuals With Dystrophinopathy at a Tertiary Care Center in Chicago. Pediatr Neurol 2024; 158:94-99. [PMID: 39024712 DOI: 10.1016/j.pediatrneurol.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To study the prevalence of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in individuals with dystrophinopathy compared with the general population. METHODS Retrospective chart review to examine the prevalence of ADHD and ASD, diagnosed both formally and informally, in individuals with dystrophinopathy receiving care in the multidisciplinary neuromuscular clinic at the Ann and Robert H. Lurie Children's Hospital of Chicago. RESULTS Our results demonstrate an ADHD prevalence of 18.40% and ASD prevalence of 12.73%, both significantly higher than those reported for the general population. Our results revealed a significant association between ADHD diagnosis and a positive family history but did not show a statistically significant association between prevalence of ADHD and the use of steroids. CONCLUSION Based on our current study results, we plan to further evaluate the prevalence, in a prospective cross-sectional manner, using validated screens for both ADHD and ASD.
Collapse
Affiliation(s)
- Emily Diehl
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Meghan O'Neill
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Division of Developmental and Behavioral Pediatrics, Ann and Robert Lurie Children's Hospital, Chicago, Illinois
| | - Larry Gray
- Division of Developmental and Behavioral Pediatrics, Ann and Robert Lurie Children's Hospital, Chicago, Illinois
| | - Abigail Schwaede
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Nancy Kuntz
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vamshi K Rao
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
3
|
Zanoteli E, França MC, Marques W. Gene-based therapies for neuromuscular disorders. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-10. [PMID: 38325390 PMCID: PMC10849828 DOI: 10.1055/s-0043-1777755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Neuromuscular diseases (NMD) include a broad group of medical conditions with both acquired and genetic causes. In recent years, important advances have been made in the treatment of genetically caused NMD, and most of these advances are due to the implementation of therapies aimed at gene regulation. Among these therapies, gene replacement, small interfering RNA (siRNA), and antisense antinucleotides are the most promising approaches. More importantly, some of these therapies have already gained regulatory approval or are in the final stages of approval. The review focuses on motor neuron diseases, neuropathies, and Duchenne muscular dystrophy, summarizing the most recent developments in gene-based therapies for these conditions.
Collapse
Affiliation(s)
- Edmar Zanoteli
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil.
| | - Marcondes Cavalcante França
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brazil.
| | - Wilson Marques
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
| |
Collapse
|
4
|
La Grua A, Rao I, Susani L, Lucchini F, Raimondi E, Vezzoni P, Paulis M. Chromosome Transplantation: Opportunities and Limitations. Cells 2024; 13:666. [PMID: 38667281 PMCID: PMC11048979 DOI: 10.3390/cells13080666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
There are thousands of rare genetic diseases that could be treated with classical gene therapy strategies such as the addition of the defective gene via viral or non-viral delivery or by direct gene editing. However, several genetic defects are too complex for these approaches. These "genomic mutations" include aneuploidies, intra and inter chromosomal rearrangements, large deletions, or inversion and copy number variations. Chromosome transplantation (CT) refers to the precise substitution of an endogenous chromosome with an exogenous one. By the addition of an exogenous chromosome and the concomitant elimination of the endogenous one, every genetic defect, irrespective of its nature, could be resolved. In the current review, we analyze the state of the art of this technique and discuss its possible application to human pathology. CT might not be limited to the treatment of human diseases. By working on sex chromosomes, we showed that female cells can be obtained from male cells, since chromosome-transplanted cells can lose either sex chromosome, giving rise to 46,XY or 46,XX diploid cells, a modification that could be exploited to obtain female gametes from male cells. Moreover, CT could be used in veterinary biology, since entire chromosomes containing an advantageous locus could be transferred to animals of zootechnical interest without altering their specific genetic background and the need for long and complex interbreeding. CT could also be useful to rescue extinct species if only male cells were available. Finally, the generation of "synthetic" cells could be achieved by repeated CT into a recipient cell. CT is an additional tool for genetic modification of mammalian cells.
Collapse
Affiliation(s)
- Angela La Grua
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20129 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (I.R.); (L.S.)
| | - Ilaria Rao
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (I.R.); (L.S.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Lucia Susani
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (I.R.); (L.S.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Franco Lucchini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Elena Raimondi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Paolo Vezzoni
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (I.R.); (L.S.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Marianna Paulis
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (I.R.); (L.S.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| |
Collapse
|
5
|
Benzoni P, Gazzerro E, Fiorillo C, Baratto S, Bartolucci C, Severi S, Milanesi R, Lippi M, Langione M, Murano C, Meoni C, Popolizio V, Cospito A, Baruscotti M, Bucchi A, Barbuti A. Caveolin-3 and Caveolin-1 Interaction Decreases Channel Dysfunction Due to Caveolin-3 Mutations. Int J Mol Sci 2024; 25:980. [PMID: 38256054 PMCID: PMC10816214 DOI: 10.3390/ijms25020980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Caveolae constitute membrane microdomains where receptors and ion channels functionally interact. Caveolin-3 (cav-3) is the key structural component of muscular caveolae. Mutations in CAV3 lead to caveolinopathies, which result in both muscular dystrophies and cardiac diseases. In cardiomyocytes, cav-1 participates with cav-3 to form caveolae; skeletal myotubes and adult skeletal fibers do not express cav-1. In the heart, the absence of cardiac alterations in the majority of cases may depend on a conserved organization of caveolae thanks to the expression of cav-1. We decided to focus on three specific cav-3 mutations (Δ62-64YTT; T78K and W101C) found in heterozygosis in patients suffering from skeletal muscle disorders. We overexpressed both the WT and mutated cav-3 together with ion channels interacting with and modulated by cav-3. Patch-clamp analysis conducted in caveolin-free cells (MEF-KO), revealed that the T78K mutant is dominant negative, causing its intracellular retention together with cav-3 WT, and inducing a significant reduction in current densities of all three ion channels tested. The other cav-3 mutations did not cause significant alterations. Mathematical modelling of the effects of cav-3 T78K would impair repolarization to levels incompatible with life. For this reason, we decided to compare the effects of this mutation in other cell lines that endogenously express cav-1 (MEF-STO and CHO cells) and to modulate cav-1 expression with an shRNA approach. In these systems, the membrane localization of cav-3 T78K was rescued in the presence of cav-1, and the current densities of hHCN4, hKv1.5 and hKir2.1 were also rescued. These results constitute the first evidence of a compensatory role of cav-1 in the heart, justifying the reduced susceptibility of this organ to caveolinopathies.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Gazzerro
- Unit of Muscle Research, Experimental and Clinical Research Center, Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité-University Berlin, 13125 Berlin, Germany
| | - Chiara Fiorillo
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, DINOGMI-University of Genova, 16147 Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Chiara Bartolucci
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, 47521 Cesena, Italy
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, 47521 Cesena, Italy
| | - Raffaella Milanesi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Melania Lippi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marianna Langione
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Carmen Murano
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Clarissa Meoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Vera Popolizio
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alessandro Cospito
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Wen Y, Yang L, Shen G, Dai S, Wang J, Wang X. A novel splicing mutation identified in a DMD patient: a case report. Front Pediatr 2023; 11:1261318. [PMID: 38054185 PMCID: PMC10694253 DOI: 10.3389/fped.2023.1261318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD, ORPHA:98896) is a lethal X-linked recessive disease that manifests as progressive muscular weakness and wasting. Mutations in the dystrophy gene (DMD) are the main cause of Duchenne muscular dystrophy. Case presentation This study aims to determine novel mutations of DMD and help preimplantation genetic diagnosis (PGD) for family planning. Here present a 4-year-old Chinses boy with DMD, whole-exome sequencing (WES) was performed to identify the molecular basis of the disease. It was confirmed that the boy carried a novel hemizygous mutation of NC_000023.11(NM_004006.3): c.5912_5922 + 19delinsATGTATG in DMD which inherited from his mother. This led to the aberrant splicing of DMD which demonstrated by a minigene splicing assay and further resulted in the impairment of the dystrophy protein. Conclusions Our study discovered a novel splicing mutation of DMD in a DMD patient, which expands the variant spectrum of this gene and provide precise genetic diagnosis of DMD for timely therapy. Meanwhile, this finding will supply valuable information for preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Yuting Wen
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Luo Yang
- Department of Urology & Pelvic Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Gan Shen
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiang Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Shang R, Miao J. Mechanisms and effects of metformin on skeletal muscle disorders. Front Neurol 2023; 14:1275266. [PMID: 37928155 PMCID: PMC10621799 DOI: 10.3389/fneur.2023.1275266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Skeletal muscle disorders are mostly genetic and include several rare diseases. With disease progression, muscle fibrosis and adiposis occur, resulting in limited mobility. The long course of these diseases combined with limited treatment options affect patients both psychologically and economically, hence the development of novel treatments for neuromuscular diseases is crucial to obtain a better quality of life. As a widely used hypoglycemic drug in clinical practice, metformin not only has anti-inflammatory, autophagy-regulating, and mitochondrial biogenesis-regulating effects, but it has also been reported to improve the symptoms of neuromuscular diseases, delay hypokinesia, and regulate skeletal muscle mass. However, metformin's specific mechanism of action in neuromuscular diseases requires further elucidation. This review summarizes the evidence showing that metformin can regulate inflammation, autophagy, and mitochondrial biogenesis through different pathways, and further explores its mechanism of action in Duchenne muscular dystrophy, statin-associated muscle disorders, and age-related sarcopenia. This review clarifies the directions of future research on therapy for neuromuscular diseases.
Collapse
Affiliation(s)
| | - Jing Miao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|