1
|
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131093. [PMID: 36905906 DOI: 10.1016/j.jhazmat.2023.131093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapidly increasing application of silver nanoparticles (AgNPs) boosts their release into the environment, which raises a reasonable alarm for ecologists and health specialists. This is manifested as increased research devoted to the influence of AgNPs on physiological and cellular processes in various model systems, including mammals. The topic of the present paper is the ability of silver to interfere with copper metabolism, the potential health effects of this interference, and the danger of low silver concentrations to humans. The chemical properties of ionic and nanoparticle silver, supporting the possibility of silver release by AgNPs in extracellular and intracellular compartments of mammals, are discussed. The possibility of justified use of silver for the treatment of some severe diseases, including tumors and viral infections, based on the specific molecular mechanisms of the decrease in copper status by silver ions released from AgNPs is also discussed.
Collapse
Affiliation(s)
- Alexey N Skvortsov
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Ekaterina Yu Ilyechova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia.
| | - Ludmila V Puchkova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
2
|
Orlov IA, Sankova TP, Skvortsov AN, Klotchenko SA, Sakhenberg EI, Mekhova AA, Kiseleva IV, Ilyechova EY, Puchkova LV. Properties of recombinant extracellular N-terminal domain of human high-affinity copper transporter 1 (hNdCTR1) and its interactions with Cu(II) and Ag(I) ions. Dalton Trans 2023; 52:3403-3419. [PMID: 36815348 DOI: 10.1039/d2dt04060c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
High-affinity copper transporter 1 (CTR1) is a key link in the transfer of copper (Cu) from the extracellular environment to the cell. Violation in the control system of its expression, or mutations in this gene, cause a global copper imbalance. However, the mechanism of copper transfer via CTR1 remains unclear. It has been shown that transformed bacteria synthesizing the fused GB1-NdCTR become resistant to toxic silver ions. According to UV-Vis spectrophotometry and isothermal titration calorimetry, electrophoretically pure GB1-NdCTR specifically and reversibly binds copper and silver ions, and binding is associated with aggregation. Purified NdCTR1 forms SDS-resistant oligomers. The link between nontrivial properties of NdCTR1 and copper import mechanism from extracellular space, as well as potential chelating properties of NdCTR1, are discussed.
Collapse
Affiliation(s)
- Iurii A Orlov
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia.
| | - Tatiana P Sankova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Alexey N Skvortsov
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.,Laboratory of The Molecular Biology of Stem Cells, Institute of Cytology, RAS, 194064 St. Petersburg, Russia
| | - Sergey A Klotchenko
- Laboratory for the Development of Molecular Diagnostic Systems, Smorodintsev Research Institute of Influenza, 197376 St. Petersburg, Russia
| | - Elena I Sakhenberg
- Laboratory of cell protection mechanisms, Institute of Cytology, RAS, 194064 St. Petersburg, Russia
| | - Aleksandra A Mekhova
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia. .,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Irina V Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ekaterina Yu Ilyechova
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia. .,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.,Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ludmila V Puchkova
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia. .,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.,Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
3
|
Skomorokhova EA, Sankova TP, Orlov IA, Savelev AN, Magazenkova DN, Pliss MG, Skvortsov AN, Sosnin IM, Kirilenko DA, Grishchuk IV, Sakhenberg EI, Polishchuk EV, Brunkov PN, Romanov AE, Puchkova LV, Ilyechova EY. Size-Dependent Bioactivity of Silver Nanoparticles: Antibacterial Properties, Influence on Copper Status in Mice, and Whole-Body Turnover. Nanotechnol Sci Appl 2020; 13:137-157. [PMID: 33408467 PMCID: PMC7781014 DOI: 10.2147/nsa.s287658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The ability of silver nanoparticles (AgNPs) of different sizes to influence copper metabolism in mice is assessed. Materials and Methods AgNPs with diameters of 10, 20, and 75 nm were fabricated through a chemical reduction of silver nitrate and characterized by UV/Vis spectrometry, transmission and scanning electronic microscopy, and laser diffractometry. To test their bioactivity, Escherichia coli cells, cultured A549 cells, and C57Bl/6 mice were used. The antibacterial activity of AgNPs was determined by inhibition of colony-forming ability, and cytotoxicity was tested using the MTT test (viability, %). Ceruloplasmin (Cp, the major mammalian extracellular copper-containing protein) concentration and enzymatic activity were measured using gel-assay analyses and WB, respectively. In vitro binding of AgNPs with serum proteins was monitored with UV/Vis spectroscopy. Metal concentrations were measured using atomic absorption spectrometry. Results The smallest AgNPs displayed the largest dose- and time-dependent antibacterial activity. All nanoparticles inhibited the metabolic activity of A549 cells in accordance with dose and time, but no correlation between cytotoxicity and nanoparticle size was found. Nanosilver was not uniformly distributed through the body of mice intraperitoneally treated with low AgNP concentrations. It was predominantly accumulated in liver. There, nanosilver was included in ceruloplasmin, and Ag-ceruloplasmin with low oxidase activity level was formed. Larger nanoparticles more effectively interfered with the copper metabolism of mice. Large AgNPs quickly induced a drop of blood serum oxidase activity to practically zero, but after cancellation of AgNP treatment, the activity was rapidly restored. A major fraction of the nanosilver was excreted in the bile with Cp. Nanosilver was bound by alpha-2-macroglobulin in vitro and in vivo, but silver did not substitute for the copper atoms of Cp in vitro. Conclusion The data showed that even at low concentrations, AgNPs influence murine copper metabolism in size-dependent manner. This property negatively correlated with the antibacterial activity of AgNPs.
Collapse
Affiliation(s)
- Ekaterina A Skomorokhova
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia
| | - Tatiana P Sankova
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Iurii A Orlov
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia
| | - Andrew N Savelev
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Daria N Magazenkova
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mikhail G Pliss
- Department of Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia.,Laboratory of Blood Circulation Biophysics, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Alexey N Skvortsov
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya M Sosnin
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia
| | - Demid A Kirilenko
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Center of Nanoheterostructures Physics, Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ivan V Grishchuk
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Elena I Sakhenberg
- Laboratory of Cell Protection Mechanisms, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Polishchuk
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Pavel N Brunkov
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Center of Nanoheterostructures Physics, Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey E Romanov
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Center of Nanoheterostructures Physics, Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ludmila V Puchkova
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia.,Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ekaterina Yu Ilyechova
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
4
|
Ren F, Logeman BL, Zhang X, Liu Y, Thiele DJ, Yuan P. X-ray structures of the high-affinity copper transporter Ctr1. Nat Commun 2019; 10:1386. [PMID: 30918258 PMCID: PMC6437178 DOI: 10.1038/s41467-019-09376-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/06/2019] [Indexed: 02/02/2023] Open
Abstract
Copper (Cu) is an essential trace element for growth and development and abnormal Cu levels are associated with anemia, metabolic disease and cancer. Evolutionarily conserved from fungi to humans, the high-affinity Cu+ transporter Ctr1 is crucial for both dietary Cu uptake and peripheral distribution, yet the mechanisms for selective permeation of potentially toxic Cu+ ions across cell membranes are unknown. Here we present X-ray crystal structures of Ctr1 from Salmo salar in both Cu+-free and Cu+-bound states, revealing a homo-trimeric Cu+-selective ion channel-like architecture. Two layers of methionine triads form a selectivity filter, coordinating two bound Cu+ ions close to the extracellular entrance. These structures, together with Ctr1 functional characterization, provide a high resolution picture to understand Cu+ import across cellular membranes and suggest therapeutic opportunities for intervention in diseases characterized by inappropriate Cu accumulation. Copper (Cu) is an essential trace element for growth and development and the Cu+ transporter Ctr1 is crucial for both dietary Cu uptake and peripheral distribution. Here authors solve Cu+ -free and Cu+ -bound Ctr1 structures which adopt a homo-trimeric Cu+ -selective ion channel-like architecture
Collapse
Affiliation(s)
- Feifei Ren
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brandon L Logeman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA. .,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|