1
|
Kienlein M, Zacharias M, Reif MM. Efficient and accurate calculation of proline cis/trans isomerization free energies from Hamiltonian replica exchange molecular dynamics simulations. Structure 2023; 31:1473-1484.e6. [PMID: 37657438 DOI: 10.1016/j.str.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Proline cis/trans isomerization plays an important role in many biological processes but occurs on time scales not accessible to brute-force molecular dynamics (MD) simulations. We have designed a new Hamiltonian replica exchange scheme, ω-bias potential replica exchange molecular dynamics (ωBP-REMD), to efficiently and accurately calculate proline cis/trans isomerization free energies. ωBP-REMD is applied to various proline-containing tripeptides and a biologically important proline residue in the N2-domain of the gene-3-protein of phage fd in the wildtype and mutant variants of the protein. Excellent cis/trans transition rates are obtained. Reweighting of the sampled probability distribution along the peptide bond dihedral angle allows construction of the corresponding free-energy profile and calculation of the cis/trans isomerization free energy with high statistical precision. Very good agreement with experimental data is obtained. ωBP-REMD outperforms standard umbrella sampling in terms of convergence and agreement with experiment and strongly reduces perturbation of the local structure near the proline residue.
Collapse
Affiliation(s)
- Maximilian Kienlein
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Maria M Reif
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany.
| |
Collapse
|
2
|
Zabłocka A, Kazana W, Sochocka M, Stańczykiewicz B, Janusz M, Leszek J, Orzechowska B. Inverse Correlation Between Alzheimer's Disease and Cancer: Short Overview. Mol Neurobiol 2021; 58:6335-6349. [PMID: 34523079 PMCID: PMC8639554 DOI: 10.1007/s12035-021-02544-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
The negative association between Alzheimer's disease (AD) and cancer suggests that susceptibility to one disease may protect against the other. When biological mechanisms of AD and cancer and relationship between them are understood, the unsolved problem of both diseases which still touches the growing human population could be overcome. Actual information about biological mechanisms and common risk factors such as chronic inflammation, age-related metabolic deregulation, and family history is presented here. Common signaling pathways, e.g., p53, Wnt, role of Pin1, and microRNA, are discussed as well. Much attention is also paid to the potential impact of chronic viral, bacterial, and fungal infections that are responsible for the inflammatory pathway in AD and also play a key role to cancer development. New data about common mechanisms in etiopathology of cancer and neurological diseases suggests new therapeutic strategies. Among them, the use of nilotinib, tyrosine kinase inhibitor, protein kinase C, and bexarotene is the most promising.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland.
| | - Wioletta Kazana
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, K. Bartla 5, 51-618, Wroclaw, Poland
| | - Maria Janusz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, L. Pasteura 10, 50-367, Wroclaw, Poland
| | - Beata Orzechowska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
3
|
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 2021; 26:280-295. [PMID: 32382138 DOI: 10.1038/s41380-020-0760-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.
| |
Collapse
|
4
|
Wu H, Xie D, Yang Y, Yang Q, Shi X, Yang R. Ultrasound-Targeted Microbubble Destruction-Mediated miR-206 Overexpression Promotes Apoptosis and Inhibits Metastasis of Hepatocellular Carcinoma Cells Via Targeting PPIB. Technol Cancer Res Treat 2020; 19:1533033820959355. [PMID: 33111654 PMCID: PMC7607806 DOI: 10.1177/1533033820959355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Ultrasound-targeted microbubble destruction (UTMD) has been found to be an effective method for delivering microRNAs (miRNAs, miRs). The current study is aimed at discovering the potential anti-cancer effects of UTMD-mediated miR-206 on HCC. Methods: In our study, the expressions of miR-206 and peptidyl-prolyl cis-trans isomerase B (PPIB) in HCC tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). PPIB expressions in HCC and adjacent normal tissues were analyzed by gene expression profiling interactive analysis (GEPIA). MiR-206 mimic and mimic control were transfected into HCC cells using UTMD. Potential binding sites between miR-206 and PPIB were predicted and confirmed by TargetScan and dual-luciferase reporter assay, respectively. Cell migration, invasion, and apoptosis were detected by wound healing assay, Transwell, and flow cytometry, respectively. The expressions of apoptosis-related proteins (Bax, Bcl-2), Epithelial-to-mesenchymal (EMT) markers (E-cadherin, N-cadherin and Snail) and PPIB were measured by Western blot. Results: MiR-206 expression was downregulated while PPIB expression was upregulated in HCC, and PPIB was recognized as a target gene of miR-206 in HCC tissues. UTMD-mediated miR-206 inhibited HCC cell migration and invasion while promoting apoptosis via regulating the expressions of proteins related to apoptosis, migration, and invasion by targeting PPIB. Conclusion: Our results suggested that the delivery of UTMD-mediated miR-206 could be a potential therapeutic method for HCC treatment, given its effects on inhibiting cell migration and invasion and promoting cell apoptosis.
Collapse
Affiliation(s)
- Huating Wu
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Dawei Xie
- Department of General Surgery, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Yingxia Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Qing Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Xiajun Shi
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Rong Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| |
Collapse
|
5
|
Griffiths SG, Ezrin A, Jackson E, Dewey L, Doucette AA. A robust strategy for proteomic identification of biomarkers of invasive phenotype complexed with extracellular heat shock proteins. Cell Stress Chaperones 2019; 24:1197-1209. [PMID: 31650515 PMCID: PMC6882979 DOI: 10.1007/s12192-019-01041-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
As an extension of their orchestration of intracellular pathways, secretion of extracellular heat shock proteins (HSPs) is an emerging paradigm of homeostasis imperative to multicellular organization. Extracellular HSP is axiomatic to the survival of cells during tumorigenesis; proportional representation of specific HSP family members is indicative of invasive potential and prognosis. Further significance has been added by the knowledge that all cancer-derived exosomes have surface-exposed HSPs that reflect the membrane topology of cells that secrete them. Extracellular HSPs are also characteristic of chronic inflammation and sepsis. Accordingly, interrogation of extracellular HSPs secreted from cell culture models may represent a facile means of identifying translational biomarker signatures for targeting in situ. In the current study, we evaluated a simple peptide-based multivalent HSP affinity approach using the Vn96 peptide for low speed pelleting of HSP complexes from bioreactor cultures of cell lines with varying invasive phenotype in xenotransplant models: U87 (glioblastoma multiforme; invasive); HELA (choriocarcinoma; minimally invasive); HEK293T (virally transformed immortalized; embryonic). Proteomic profiling by bottom-up mass spectrometry revealed a comprehensive range of candidate biomarkers including primary HSP ligands. HSP complexes were associated with additional chaperones of prognostic significance such as protein disulfide isomerases, as well as pleiotropic metabolic enzymes, established as proportionally reflective of invasive phenotype. Biomarkers of inflammatory and mechanotransductive phenotype were restricted to the most invasive cell model U87, including chitinase CHI3L1, lamin C, amyloid derivatives, and histone isoforms.
Collapse
Affiliation(s)
| | - Alan Ezrin
- NX Development Corporation, Louisville, KY, USA
| | - Emily Jackson
- David H. Murdock Research Institute, Kannapolis, NC, USA
| | - Lisa Dewey
- David H. Murdock Research Institute, Kannapolis, NC, USA
| | | |
Collapse
|
6
|
Galat A. Introduction to Peptidyl-Prolyl cis/trans Isomerase (PPIase) Series. Biomolecules 2019; 9:biom9020074. [PMID: 30791666 PMCID: PMC6406426 DOI: 10.3390/biom9020074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Andrzej Galat
- Retired from: Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA-Université Paris⁻Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|