1
|
Brackin RB, McColgan GE, Pucha SA, Kowalski MA, Drissi H, Doan TN, Patel JM. Improved Cartilage Protection with Low Molecular Weight Hyaluronic Acid Hydrogel. Bioengineering (Basel) 2023; 10:1013. [PMID: 37760116 PMCID: PMC10525634 DOI: 10.3390/bioengineering10091013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic joint injuries are common, leading to progressive tissue degeneration and the development of osteoarthritis. The post-traumatic joint experiences a pro-inflammatory milieu, initiating a subtle but deteriorative process in cartilage tissue. To prevent or even reverse this process, our group previously developed a tissue-penetrating methacrylated hyaluronic acid (MeHA) hydrogel system, crosslinked within cartilage to restore and/or protect the tissue. In the current study, we further optimized this approach by investigating the impact of biomaterial molecular weight (MW; 20, 75, 100 kDa) on its integration within and reinforcement of cartilage, as well as its ability to protect tissue degradation in a catabolic state. Indeed, the low MW MeHA integrated and reinforced cartilage tissue better than the high MW counterparts. Furthermore, in a 2 week IL-1β explant culture model, the 20 kDa MeHA demonstrated the most protection from biphasic mechanical loss, best retention of proteoglycans (Safranin O staining), and least aggrecan breakdown (NITEGE). Thus, the lower MW MeHA gels integrated better into the tissue and provided the greatest protection of the cartilage matrix. Future work will test this formulation in a preclinical model, with the goal of translating this therapeutic approach for cartilage preservation.
Collapse
Affiliation(s)
- Riley B. Brackin
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Gail E. McColgan
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Saitheja A. Pucha
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Michael A. Kowalski
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Hicham Drissi
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Thanh N. Doan
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Jay M. Patel
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| |
Collapse
|
2
|
Lee DK, Kim M, Jeong J, Lee YS, Yoon JW, An MJ, Jung HY, Kim CH, Ahn Y, Choi KH, Jo C, Lee CK. Unlocking the potential of stem cells: Their crucial role in the production of cultivated meat. Curr Res Food Sci 2023; 7:100551. [PMID: 37575132 PMCID: PMC10412782 DOI: 10.1016/j.crfs.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Cellular agriculture is an emerging research field of agribiotechnology that aims to produce agricultural products using stem cells, without sacrificing animals or cultivating crops. Cultivated meat, as a representative cellular product of cellular agriculture, is being actively researched due to global food insecurity, environmental, and ethical concerns. This review focuses on the application of stem cells, which are the seeds of cellular agriculture, for the production of cultivated meat, with emphasis on deriving and culturing muscle and adipose stem cells for imitating fresh meat. Establishing standards and safety regulations for culturing stem cells is crucial for the market entry of cultured muscle tissue-based biomaterials. Understanding stem cells is a prerequisite for creating reliable cultivated meat and other cellular agricultural biomaterials. The techniques and regulations from the cultivated meat industry could pave the way for new cellular agriculture industries in the future.
Collapse
Affiliation(s)
- Dong-Kyung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Seok Lee
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Ji Won Yoon
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Min-Jeong An
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Hyun Young Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cho Hyun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yelim Ahn
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| |
Collapse
|
3
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
4
|
Mungenast L, Züger F, Selvi J, Faia-Torres AB, Rühe J, Suter-Dick L, Gullo MR. Directional Submicrofiber Hydrogel Composite Scaffolds Supporting Neuron Differentiation and Enabling Neurite Alignment. Int J Mol Sci 2022; 23:ijms231911525. [PMID: 36232822 PMCID: PMC9569964 DOI: 10.3390/ijms231911525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cell cultures aiming at tissue regeneration benefit from scaffolds with physiologically relevant elastic moduli to optimally trigger cell attachment, proliferation and promote differentiation, guidance and tissue maturation. Complex scaffolds designed with guiding cues can mimic the anisotropic nature of neural tissues, such as spinal cord or brain, and recall the ability of human neural progenitor cells to differentiate and align. This work introduces a cost-efficient gelatin-based submicron patterned hydrogel–fiber composite with tuned stiffness, able to support cell attachment, differentiation and alignment of neurons derived from human progenitor cells. The enzymatically crosslinked gelatin-based hydrogels were generated with stiffnesses from 8 to 80 kPa, onto which poly(ε-caprolactone) (PCL) alignment cues were electrospun such that the fibers had a preferential alignment. The fiber–hydrogel composites with a modulus of about 20 kPa showed the strongest cell attachment and highest cell proliferation, rendering them an ideal differentiation support. Differentiated neurons aligned and bundled their neurites along the aligned PCL filaments, which is unique to this cell type on a fiber–hydrogel composite. This novel scaffold relies on robust and inexpensive technology and is suitable for neural tissue engineering where directional neuron alignment is required, such as in the spinal cord.
Collapse
Affiliation(s)
- Lena Mungenast
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Correspondence: (L.M.); (M.R.G.)
| | - Fabian Züger
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Jasmin Selvi
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Ana Bela Faia-Torres
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Jürgen Rühe
- Department of Microsystems Engineering, University of Freiburg–IMTEK, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Laura Suter-Dick
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Maurizio R. Gullo
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Correspondence: (L.M.); (M.R.G.)
| |
Collapse
|
5
|
Characteristic and Chondrogenic Differentiation Analysis of Hybrid Hydrogels Comprised of Hyaluronic Acid Methacryloyl (HAMA), Gelatin Methacryloyl (GelMA), and the Acrylate-Functionalized Nano-Silica Crosslinker. Polymers (Basel) 2022; 14:polym14102003. [PMID: 35631885 PMCID: PMC9144778 DOI: 10.3390/polym14102003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Developing a biomaterial suitable for adipose-derived stem cell (ADSCs)-laden scaffolds that can directly bond to cartilage tissue surfaces in tissue engineering has still been a significant challenge. The bioinspired hybrid hydrogel approaches based on hyaluronic acid methacryloyl (HAMA) and gelatin methacryloyl (GelMA) appear to have more promise. Herein, we report the cartilage tissue engineering application of a novel photocured hybrid hydrogel system comprising HAMA, GelMA, and 0~1.0% (w/v) acrylate-functionalized nano-silica (AFnSi) crosslinker, in addition to describing the preparation of related HAMA, GelMA, and AFnSi materials and confirming their related chemical evidence. The study also examines the physicochemical characteristics of these hybrid hydrogels, including swelling behavior, morphological conformation, mechanical properties, and biodegradation. To further investigate cell viability and chondrogenic differentiation, the hADSCs were loaded with a two-to-one ratio of the HAMA-GelMA (HG) hybrid hydrogel with 0~1.0% (w/v) AFnSi crosslinker to examine the process of optimal chondrogenic development. Results showed that the morphological microstructure, mechanical properties, and longer degradation time of the HG+0.5% (w/v) AFnSi hydrogel demonstrated the acellular novel matrix was optimal to support hADSCs differentiation. In other words, the in vitro experimental results showed that hADSCs laden in the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi not only significantly increased chondrogenic marker gene expressions such as SOX-9, aggrecan, and type II collagen expression compared to the HA and HG groups, but also enhanced the expression of sulfated glycosaminoglycan (sGAG) and type II collagen formation. We have concluded that the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi will provide a suitable environment for articular cartilage tissue engineering applications.
Collapse
|
6
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
7
|
Balion Z, Cėpla V, Svirskiene N, Svirskis G, Druceikaitė K, Inokaitis H, Rusteikaitė J, Masilionis I, Stankevičienė G, Jelinskas T, Ulčinas A, Samanta A, Valiokas R, Jekabsone A. Cerebellar Cells Self-Assemble into Functional Organoids on Synthetic, Chemically Crosslinked ECM-Mimicking Peptide Hydrogels. Biomolecules 2020; 10:E754. [PMID: 32408703 PMCID: PMC7277677 DOI: 10.3390/biom10050754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
Hydrogel-supported neural cell cultures are more in vivo-relevant compared to monolayers formed on glass or plastic substrates. However, there is a lack of synthetic microenvironment available for obtaining standardized and easily reproducible cultures characterized by tissue-mimicking cell composition, cell-cell interactions, and functional networks. Synthetic peptides representing the biological properties of the extracellular matrix (ECM) proteins have been reported to promote the adhesion-driven differentiation and functional maturation of neural cells. Thus, such peptides can serve as building blocks for engineering a standardized, all-synthetic environment. In this study, we have compared the effect of two chemically crosslinked hydrogel compositions on primary cerebellar cells: collagen-like peptide (CLP), and CLP with an integrin-binding motif arginine-glycine-aspartate (CLP-RGD), both conjugated to polyethylene glycol molecular templates (PEG-CLP and PEG-CLP-RGD, respectively) and fabricated as self-supporting membranes. Both compositions promoted a spontaneous organization of primary cerebellar cells into tissue-like clusters with fast-rising Ca2+ signals in soma, reflecting action potential generation. Notably, neurons on PEG-CLP-RGD had more neurites and better synaptic efficiency compared to PEG-CLP. For comparison, poly-L-lysine-coated glass and plastic surfaces did not induce formation of such spontaneously active networks. Additionally, contrary to the hydrogel membranes, glass substrates functionalized with PEG-CLP and PEG-CLP-RGD did not sufficiently support cell attachment and, subsequently, did not promote functional cluster formation. These results indicate that not only chemical composition but also the hydrogel structure and viscoelasticity are essential for bioactive signaling. The synthetic strategy based on ECM-mimicking, multifunctional blocks in registry with chemical crosslinking for obtaining tissue-like mechanical properties is promising for the development of fast and well standardized functional in vitro neural models and new regenerative therapies.
Collapse
Affiliation(s)
- Zbigniev Balion
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT-50162 Kaunas, Lithuania; (Z.B.); (J.R.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (N.S.); (G.S.)
| | - Vytautas Cėpla
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania;
| | - Nataša Svirskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (N.S.); (G.S.)
| | - Gytis Svirskis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (N.S.); (G.S.)
| | - Kristina Druceikaitė
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
| | - Hermanas Inokaitis
- Institute of Anatomy, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-43074 Kaunas, Lithuania;
| | - Justina Rusteikaitė
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT-50162 Kaunas, Lithuania; (Z.B.); (J.R.)
| | - Ignas Masilionis
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
| | - Gintarė Stankevičienė
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania;
| | - Tadas Jelinskas
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
| | - Artūras Ulčinas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania;
| | - Ayan Samanta
- Polymer Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden;
| | - Ramūnas Valiokas
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania;
| | - Aistė Jekabsone
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT-50162 Kaunas, Lithuania; (Z.B.); (J.R.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (N.S.); (G.S.)
| |
Collapse
|