1
|
Roy R, Sanyal D, Roychowdhury S, Chattopadhyay K. Studies of Protein Phase Separation Using Leishmania Kinetoplastid Membrane Protein-11. J Phys Chem B 2024. [PMID: 39439298 DOI: 10.1021/acs.jpcb.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Despite the significant understanding of phase separation in proteins with intrinsically disordered regions, a considerable percentage of proteins without such regions also undergo phase separation, presenting an intriguing area for ongoing research across all kingdoms of life. Using a combination of spectroscopic and microscopic techniques, we report here for the first time that a low temperature and low pH can trigger the liquid-liquid phase separation (LLPS) of a parasitic protein, kinetoplastid membrane protein-11 (KMP-11). Electrostatic and hydrophobic forces are found to be essential for the formation and stability of phase-separated protein assemblies. We show further that the increase in the ionic strength beyond a threshold decreases the interchain electrostatic interactions acting between the alternate charged blocks, altering the propensity for phase separation. More interestingly, the addition of cholesterol inhibits LLPS by engaging the cholesterol recognition amino acid consensus (CRAC)-like domains present in the protein. This was further confirmed using a CRAC-deleted mutant with perturbed cholesterol binding, which did not undergo LLPS.
Collapse
Affiliation(s)
- Rajdip Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Dwipanjan Sanyal
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Sumangal Roychowdhury
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
2
|
Estève PO, Sen S, Vishnu US, Ruse C, Chin HG, Pradhan S. Poly ADP-ribosylation of SET8 leads to aberrant H4K20 methylation in mammalian nuclear genome. Commun Biol 2022; 5:1292. [PMID: 36434141 PMCID: PMC9700808 DOI: 10.1038/s42003-022-04241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
In mammalian cells, SET8 mediated Histone H4 Lys 20 monomethylation (H4K20me1) has been implicated in regulating mitotic condensation, DNA replication, DNA damage response, and gene expression. Here we show SET8, the only known enzyme for H4K20me1 is post-translationally poly ADP-ribosylated by PARP1 on lysine residues. PARP1 interacts with SET8 in a cell cycle-dependent manner. Poly ADP-ribosylation on SET8 renders it catalytically compromised, and degradation via ubiquitylation pathway. Knockdown of PARP1 led to an increase of SET8 protein levels, leading to aberrant H4K20me1 and H4K20me3 domains in the genome. H4K20me1 is associated with higher gene transcription levels while the increase of H4K20me3 levels was predominant in DNA repeat elements. Hence, SET8 mediated chromatin remodeling in mammalian cells are modulated by poly ADP-ribosylation by PARP1.
Collapse
Affiliation(s)
- Pierre-Olivier Estève
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Sagnik Sen
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Udayakumar S. Vishnu
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Cristian Ruse
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA ,grid.479574.c0000 0004 1791 3172Present Address: Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139 USA
| | - Hang Gyeong Chin
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Sriharsa Pradhan
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| |
Collapse
|
3
|
Sanyal D, Banerjee S, Bej A, Chowdhury VR, Uversky VN, Chowdhury S, Chattopadhyay K. An integrated understanding of the evolutionary and structural features of the SARS-CoV-2 spike receptor binding domain (RBD). Int J Biol Macromol 2022; 217:492-505. [PMID: 35841961 PMCID: PMC9278002 DOI: 10.1016/j.ijbiomac.2022.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022]
Abstract
Conventional drug development strategies typically use pocket in protein structures as drug-target sites. They overlook the plausible effects of protein evolvability and resistant mutations on protein structure which in turn may impair protein-drug interaction. In this study, we used an integrated evolution and structure guided strategy to develop potential evolutionary-escape resistant therapeutics using receptor binding domain (RBD) of SARS-CoV-2 spike-protein/S-protein as a model. Deploying an ensemble of sequence space exploratory tools including co-evolutionary analysis and deep mutational scans we provide a quantitative insight into the evolutionarily constrained subspace of the RBD sequence-space. Guided by molecular simulation and structure network analysis we highlight regions inside the RBD, which are critical for providing structural integrity and conformational flexibility. Using fuzzy C-means clustering we combined evolutionary and structural features of RBD and identified a critical region. Subsequently, we used computational drug screening using a library of 1615 small molecules and identified one lead molecule, which is expected to target the identified region, critical for evolvability and structural stability of RBD. This integrated evolution-structure guided strategy to develop evolutionary-escape resistant lead molecules have potential general applications beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Dwipanjan Sanyal
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Suharto Banerjee
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Aritra Bej
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Vaidehi Roy Chowdhury
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Sourav Chowdhury
- Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
4
|
Sen S, Dey A, Bandhyopadhyay S, Uversky VN, Maulik U. Understanding structural malleability of the SARS-CoV-2 proteins and relation to the comorbidities. Brief Bioinform 2021; 22:6304388. [PMID: 34143202 DOI: 10.1093/bib/bbab232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the coronavirus disease (COVID-19), is a part of the $\beta $-Coronaviridae family. The virus contains five major protein classes viz., four structural proteins [nucleocapsid (N), membrane (M), envelop (E) and spike glycoprotein (S)] and replicase polyproteins (R), synthesized as two polyproteins (ORF1a and ORF1ab). Due to the severity of the pandemic, most of the SARS-CoV-2-related research are focused on finding therapeutic solutions. However, studies on the sequences and structure space throughout the evolutionary time frame of viral proteins are limited. Besides, the structural malleability of viral proteins can be directly or indirectly associated with the dysfunctionality of the host cell proteins. This dysfunctionality may lead to comorbidities during the infection and may continue at the post-infection stage. In this regard, we conduct the evolutionary sequence-structure analysis of the viral proteins to evaluate their malleability. Subsequently, intrinsic disorder propensities of these viral proteins have been studied to confirm that the short intrinsically disordered regions play an important role in enhancing the likelihood of the host proteins interacting with the viral proteins. These interactions may result in molecular dysfunctionality, finally leading to different diseases. Based on the host cell proteins, the diseases are divided in two distinct classes: (i) proteins, directly associated with the set of diseases while showing similar activities, and (ii) cytokine storm-mediated pro-inflammation (e.g. acute respiratory distress syndrome, malignancies) and neuroinflammation (e.g. neurodegenerative and neuropsychiatric diseases). Finally, the study unveils that males and postmenopausal females can be more vulnerable to SARS-CoV-2 infection due to the androgen-mediated protein transmembrane serine protease 2.
Collapse
Affiliation(s)
- Sagnik Sen
- Department of Computer Science and Engineering, Jadavpur University, Kolkata-32, West Bengal, India
| | - Ashmita Dey
- Department of Computer Science and Engineering, Jadavpur University, Kolkata-32, West Bengal, India
| | | | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, 142290 Russia
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata-32, West Bengal, India
| |
Collapse
|
5
|
Genoud S, Jones MWM, Trist BG, Deng J, Chen S, Hare DJ, Double KL. Simultaneous structural and elemental nano-imaging of human brain tissue. Chem Sci 2020; 11:8919-8927. [PMID: 34123146 PMCID: PMC8163372 DOI: 10.1039/d0sc02844d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Examining chemical and structural characteristics of micro-features in complex tissue matrices is essential for understanding biological systems. Advances in multimodal chemical and structural imaging using synchrotron radiation have overcome many issues in correlative imaging, enabling the characterization of distinct microfeatures at nanoscale resolution in ex vivo tissues. We present a nanoscale imaging method that pairs X-ray ptychography and X-ray fluorescence microscopy (XFM) to simultaneously examine structural features and quantify elemental content of microfeatures in complex ex vivo tissues. We examined the neuropathological microfeatures Lewy bodies, aggregations of superoxide dismutase 1 (SOD1) and neuromelanin in human post-mortem Parkinson's disease tissue. Although biometals play essential roles in normal neuronal biochemistry, their dyshomeostasis is implicated in Parkinson's disease aetiology. Here we show that Lewy bodies and SOD1 aggregates have distinct elemental fingerprints yet are similar in structure, whilst neuromelanin exhibits different elemental composition and a distinct, disordered structure. The unique approach we describe is applicable to the structural and chemical characterization of a wide range of complex biological tissues at previously unprecedented levels of detail. Structural and chemical characterisation of microfeatures in unadulterated Parkinson's disease brain tissue using synchrotron nanoscale XFM and ptychography.![]()
Collapse
Affiliation(s)
- Sian Genoud
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia
| | - Michael W M Jones
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Benjamin Guy Trist
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia
| | - Junjing Deng
- Advanced Photon Source, Argonne National Laboratory Lemont IL 60439 USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory Lemont IL 60439 USA
| | - Dominic James Hare
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia .,School of Biosciences, Department of Clinical Pathology, The University of Melbourne Parkville VIC 3010 Australia .,Atomic Medicine Initiative, University of Technology Sydney NSW 2007 Australia
| | - Kay L Double
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia
| |
Collapse
|