1
|
Wong F, Rath C, Gowda BB, Patole S. Role of pentoxifylline in neonatal hypoxic ischaemic encephalopathy: a systematic review of animal studies. Lab Anim Res 2024; 40:41. [PMID: 39605099 PMCID: PMC11603731 DOI: 10.1186/s42826-024-00228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
We systematically reviewed the evidence from animal studies assessing the effects of pentoxifylline on neonatal hypoxic-ischemic encephalopathy (HIE). The PubMed, EMBASE, EMCARE, MEDLINE, Cochrane Library, and Google Scholar databases were searched for randomized and quasi randomized controlled trials (RCTs) in December 2023 to determine the effects of pentoxifylline in animal models of HIE. The quality of the included studies was assessed via the SYRCLE risk of bias (ROB) tool. The certainty of evidence was assessed via the GRADE methodology. All seven included studies (n = 248) involved a rat HIE model in which pentoxifylline (25-150 mg/kg) was administered intraperitoneally. The majority had unclear ROB. All the studies reported a protective effect of pentoxifylline on HIE-induced organ injury. Mortality was comparable at pentoxifylline doses between 25 and 75 mg/kg but higher at 150 mg/kg than in the control group. Three studies reported macroscopic changes in HIE-affected organs. There was a significant reduction in cerebral infarction (40 and 75 mg/kg), hippocampal atrophy, and visible gut injury (60 mg/kg). A significantly lower number of Caspase 3 immunoreactive cells and necrotic cells were observed at the 60 mg/kg dose, whereas the 100 mg/kg dose had a deleterious effect. Three other studies reported significantly reduced levels of proinflammatory markers including IL-6 and TNF-alpha. Current evidence (with low uncertainty) from a rat model suggests that pentoxifylline has the potential to improve mortality and attenuate organ injury following HIE. Adequately powered, well-designed human RCTs are needed to confirm our findings.
Collapse
Affiliation(s)
- Florence Wong
- Division of General Paediatrics, Armadale Kelmscott Memorial Hospital, Mount Nasura, WA, 6112, Australia
| | - Chandra Rath
- Perth Children's Hospital, Nedlands, WA, 6009, Australia
- King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Bhanu B Gowda
- Perth Children's Hospital, Nedlands, WA, 6009, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Sanjay Patole
- King Edward Memorial Hospital, Subiaco, WA, 6008, Australia.
- School of Medicine, University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
2
|
Stroe MS, De Clerck L, Dhaenens M, Dennis RS, Deforce D, Carpentier S, Annaert P, Leys K, Smits A, Allegaert K, Van Ginneken C, Van Cruchten S. Effects of hypothermia and hypoxia on cytochrome P450-mediated drug metabolism in neonatal Göttingen minipigs. Basic Clin Pharmacol Toxicol 2024; 135:620-640. [PMID: 39315536 DOI: 10.1111/bcpt.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Asphyxiated neonates often undergo therapeutic hypothermia (TH) to reduce morbidity and mortality. As perinatal asphyxia and TH impact neonatal physiology, this could also influence enzyme functionality. Therefore, this study aimed to unravel the impact of age, hypothermia and hypoxia on porcine hepatic cytochrome P450 (CYP) gene expression, protein abundance and activity. Hepatic CYP expression, protein abundance and activity were assessed in naive adult and neonatal Göttingen minipigs, alongside those from an (non-survival) in vivo study, where four conditions-control (C), therapeutic hypothermia (TH), hypoxia (H), hypoxia and TH (H + TH)-were examined. Naive neonatal Göttingen minipigs exhibited 75% lower general CYP activity and different gene expression patterns than adults. In vitro hypothermia (33°C) decreased general CYP activity in adult liver microsomes by 36%. Gene expression was not different between TH and C while hypoxia up-regulated several genes (i.e., CYP3A29 [expression ratio; ER = 5.1472] and CYP2C33 [ER = 3.2292] in the H group and CYP2C33 [ER = 2.4914] and CYP2C42 [ER = 4.0197] in the H + TH group). The medical treatment and the interventions over 24 h, along with hypoxia and TH, affected the protein abundance. These data on CYP expression, abundance and activity in young animals can be valuable in building physiologically-based pharmacokinetic models for neonatal drug dose predictions.
Collapse
Affiliation(s)
| | - Laura De Clerck
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Rachel Siân Dennis
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- BioNotus GCV, Niel, Belgium
| | - Karen Leys
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Chris Van Ginneken
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
3
|
Francisco R, Hall S, Rathore G, Thakur N. Neonatal tone management. Semin Fetal Neonatal Med 2024; 29:101562. [PMID: 39537451 DOI: 10.1016/j.siny.2024.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Neonatal tone abnormalities can often be the first indication of cerebral palsy (CP) and need regular developmental assessments by a multidisciplinary team. The need for early diagnosis and treatment during the height of neural plasticity is crucial. Currently, the number of clinical practice guidelines and the quality of evidence for treatment of tone in neonates is insufficient. In this review, we discuss the physiology of tone abnormalities including structural-functional components of motor control and time-dependent etiology of injury. We provide a guideline for assessment of a neonate with concern for tone abnormalities including a discussion on available diagnostic and functionality rating scales. Lastly, we describe the importance of a multidisciplinary care team involving the patient's caregiver as well as non-pharmacological, pharmacological, and surgical treatment options for tone abnormalities. We stress the importance of regular, serial examinations for tone as these neonates get older to assess eligibility for additional interventions.
Collapse
Affiliation(s)
- Roshirl Francisco
- Division of Child Neurology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School, USA.
| | - Stacey Hall
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston McGovern Medical School, USA
| | - Geetanjali Rathore
- Division of Neurology, Department of Pediatrics, University of Nebraska College of Medicine, Omaha, NE, USA
| | - Nivedita Thakur
- Division of Child Neurology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School, USA
| |
Collapse
|
4
|
Perše M. Animal Models of Human Pathology: Revision, Relevance and Refinements. Biomedicines 2024; 12:2418. [PMID: 39594985 PMCID: PMC11592039 DOI: 10.3390/biomedicines12112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Animal Models of Human Pathology [...].
Collapse
Affiliation(s)
- Martina Perše
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Stroe MS, Huang MC, Annaert P, Leys K, Smits A, Allegaert K, Van Bockstal L, Valenzuela A, Ayuso M, Van Ginneken C, Van Cruchten S. Drug Disposition in Neonatal Göttingen Minipigs: Exploring Effects of Perinatal Asphyxia and Therapeutic Hypothermia. Drug Metab Dispos 2024; 52:824-835. [PMID: 38906699 DOI: 10.1124/dmd.124.001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
Asphyxiated neonates often undergo therapeutic hypothermia (TH) to reduce morbidity and mortality. Since both perinatal asphyxia (PA) and TH influence physiology, altered pharmacokinetics (PK) and pharmacodynamics (PD) are expected. Given that TH is the standard of care for PA with moderate to severe hypoxic-ischemic encephalopathy, disentangling the effect of PA versus TH on PK/PD is not possible in clinical settings. However, animal models can provide insights into this matter. The (neonatal) Göttingen Minipig, the recommended strain for nonclinical drug development, was selected as translational model. Four drugs-midazolam (MDZ), fentanyl (FNT), phenobarbital (PHB), and topiramate (TPM)-were intravenously administered under four conditions: control (C), therapeutic hypothermia (TH), hypoxia (H), and hypoxia plus TH (H+TH). Each group included six healthy male neonatal Göttingen Minipigs anesthetized for 24 hours. Blood samples were drawn at 0 (predose) and 0.5, 2, 2.5, 3, 4, 4.5, 6, 8, 12, and 24 hours post drug administration. Drug plasma concentrations were determined using validated bioanalytical assays. The PK parameters were estimated through compartmental and noncompartmental PK analysis. The study showed a statistically significant decrease in FNT clearance (CL; 66% decrease), with an approximately threefold longer half-life (t1/2) in the TH group. The H+TH group showed a 17% reduction in FNT CL, with a 62% longer t1/2 compared with the C group; however, it was not statistically significant. Although not statistically significant, trends toward lower CL and longer t1/2 were observed in the TH and H+TH groups for MDZ and PHB. Additionally, TPM demonstrated a 28% decrease in CL in the H group compared with controls. SIGNIFICANCE STATEMENT: The overarching goal of this study using the neonatal Göttingen Minipig model was to disentangle the effects of systemic hypoxia and TH on PK using four model drugs. Such insights can subsequently be used to inform and develop a physiologically based pharmacokinetic model, which is useful for drug exposure prediction in human neonates.
Collapse
Affiliation(s)
- Marina-Stefania Stroe
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Miao-Chan Huang
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Pieter Annaert
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Karen Leys
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Anne Smits
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Karel Allegaert
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Lieselotte Van Bockstal
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Allan Valenzuela
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Miriam Ayuso
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Chris Van Ginneken
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| |
Collapse
|
6
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
7
|
Tsaousi M, Sokou R, Pouliakis A, Politou M, Iacovidou N, Boutsikou T, Sulaj A, Karapati E, Tsantes AG, Tsantes AE, Valsami S, Iliodromiti Z. Hemostatic Status of Neonates with Perinatal Hypoxia, Studied via NATEM in Cord Blood Samples. CHILDREN (BASEL, SWITZERLAND) 2024; 11:799. [PMID: 39062248 PMCID: PMC11276384 DOI: 10.3390/children11070799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Perinatal hypoxia may result in coagulation dysfunction. Diminished blood flow or oxygen to the fetus/neonate during the perinatal period can cause bone marrow and liver function impairment, leading to thrombocytopenia, impaired synthesis of clotting and fibrinolytic factors, and increased destruction of platelets in the small blood vessels. The goal of the present study was to evaluate the hemostatic status of newborns with perinatal hypoxia via the non-activated thromboelastometry (NATEM) assay in cord blood samples. METHODS 134 hypoxic neonates born in our maternity unit over a 1.5-year period were enrolled in this observational cohort study, and 189 healthy neonates served as the control group. Participation in the study was voluntary and parents signed informed consent prior to recruitment. Demographic and clinical data were recorded on admission, and the NATEM method was performed on cord blood samples. The following NATEM values were evaluated: clotting time (CT), alpha angle (α-angle), clot formation time (CFT), clot amplitude at 5 and 10 min. (A5, A10), maximum clot firmness (MCF), clot lysis index at 60 min. after CT (LI60), and maximum clot elasticity (MCE). Statistical analysis was conducted utilizing the SAS for Windows 9.4 software platform. RESULTS Neonates with perinatal hypoxia exhibited decreased fibrinolytic potential in comparison to healthy neonates, as indicated by increased LI60, and this difference was statistically significant (LΙ60: 94 (92-96) Vs 93 (91-95), p value = 0.0001). There were no statistically significant differences noted among the remaining NATEM variables. CONCLUSION Our findings indicate decreased fibrinolytic potential in hypoxic neonates in comparison to healthy neonates, suggesting that NATEM could serve as an effective tool for promptly identifying hemostasis dysfunction in this group of neonates.
Collapse
Affiliation(s)
- Marina Tsaousi
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.T.); (R.S.); (T.B.); (A.S.); (E.K.); (Z.I.)
| | - Rozeta Sokou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.T.); (R.S.); (T.B.); (A.S.); (E.K.); (Z.I.)
| | - Abraham Pouliakis
- 2nd Department of Pathology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Marianna Politou
- Hematology Laboratory Blood Bank, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.P.); (S.V.)
| | - Nicoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.T.); (R.S.); (T.B.); (A.S.); (E.K.); (Z.I.)
| | - Theodora Boutsikou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.T.); (R.S.); (T.B.); (A.S.); (E.K.); (Z.I.)
| | - Alma Sulaj
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.T.); (R.S.); (T.B.); (A.S.); (E.K.); (Z.I.)
| | - Eleni Karapati
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.T.); (R.S.); (T.B.); (A.S.); (E.K.); (Z.I.)
| | - Andreas G. Tsantes
- Laboratory of Haematology and Blood Bank Unit, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Argirios E. Tsantes
- Laboratory of Haematology and Blood Bank Unit, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Serena Valsami
- Hematology Laboratory Blood Bank, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.P.); (S.V.)
| | - Zoi Iliodromiti
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.T.); (R.S.); (T.B.); (A.S.); (E.K.); (Z.I.)
| |
Collapse
|
8
|
Robillard PY, Bonsante F, Boumahni B, Staquet P, Richard M, Guinaud J, Trigolet M, Quiviger S, Iacobelli S. Clear amniotic fluid aspiration syndrome: A novel description of an old entity. PLoS One 2024; 19:e0301595. [PMID: 38857215 PMCID: PMC11164380 DOI: 10.1371/journal.pone.0301595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/14/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Clear amniotic fluid aspiration syndrome (CAF-AS) is a very rare event occurring in 0.25% of our term clear amniotic fluids deliveries. The study's aims were: 1. to characterize the risk factors and outcomes associated with Clear Amniotic Fluid Aspiration Syndrome and 2. to compare the outcomes of Clear Amniotic Fluid Aspiration to Meconium Aspiration. METHODS This was an observational study over a 22-year period in a single level-3 medical center. Compared were parturient/labor characteristics and neonatal outcomes in cases with suspected Clear Amniotic Fluid Aspiration to cases suspected for Meconium Aspiration. RESULTS Out of 79,620 term deliveries there were 66,705 (83.8%) clear amniotic fluids and 12,915 (16.2%) meconium stained amniotic fluid (MSAF). Of neonates born with clear amniotic fluid, 166 (0.25%) were diagnosed with Clear Amniotic Fluid Aspiration Syndrome (CAF-AS), while 202 (15.7%) of those born with MSAF, were diagnosed with aspiration syndrome (MSAF-AS). Both conditions had comparable rates of mild manifestation (67.5% vs 69.2%, p = 0.63). Persistent pulmonary hypertension (PPH) occurred 5 times less in CAF-AS than MSAF-AS (4% vs 20%, OR 0.17, P< 0.0001) Both conditions presented similar rates of surfactant without PPH (11.1% vs 13.4%, p = 0.87). There was 1 postnatal death in CAF-AS vs 10 in MSAF. CONCLUSION CAF-AS were quantitatively quite similar in terms of need of actual active intervention of the neonatologists in the delivery room (166 vs 202, i.e. in terms of numbers of cases and not prevalence) to MSAF-AS.We identified in these cases two major specific causes: hyperkinetic explosive deliveries in multiparas and long-lasting episodes of maternal hypotension due to epidural/spinal anaesthesia during labor. Out of 140 million births per year in the world, it should be of concern that 3 million cases are neglected nowadays. Future studies should evaluate if this CAF-AS should benefit from a more active intervention such as immediate endotracheal suction at birth, this clear fluid being very easy to suction.
Collapse
Affiliation(s)
- Pierre-Yves Robillard
- Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La Réunion
- Centre d’Etudes Périnatales Océan Indien (CEPOI), Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La réunion
| | - Francesco Bonsante
- Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La Réunion
- Centre d’Etudes Périnatales Océan Indien (CEPOI), Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La réunion
| | - Brahim Boumahni
- Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La Réunion
| | - Pierre Staquet
- Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La Réunion
| | - Magali Richard
- Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La Réunion
| | - Julie Guinaud
- Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La Réunion
| | - Marine Trigolet
- Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La Réunion
| | - Sandrine Quiviger
- Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La Réunion
| | - Silvia Iacobelli
- Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La Réunion
- Centre d’Etudes Périnatales Océan Indien (CEPOI), Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre Cedex, La réunion
| |
Collapse
|
9
|
Mao Y, Lin X, Wu Y, Lu J, Shen J, Zhong S, Jin X, Ma J. Additive interaction between birth asphyxia and febrile seizures on autism spectrum disorder: a population-based study. Mol Autism 2024; 15:17. [PMID: 38600595 PMCID: PMC11007945 DOI: 10.1186/s13229-024-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder that can significantly impact an individual's ability to socially integrate and adapt. It's crucial to identify key factors associated with ASD. Recent studies link both birth asphyxia (BA) and febrile seizures (FS) separately to higher ASD prevalence. However, investigations into the interplay of BA and FS and its relationship with ASD are yet to be conducted. The present study mainly focuses on exploring the interactive effect between BA and FS in the context of ASD. METHODS Utilizing a multi-stage stratified cluster sampling, we initially recruited 84,934 Shanghai children aged 3-12 years old from June 2014 to June 2015, ultimately including 74,251 post-exclusion criteria. A logistic regression model was conducted to estimate the interaction effect after controlling for pertinent covariates. The attributable proportion (AP), the relative excess risk due to interaction (RERI), the synergy index (SI), and multiplicative-scale interaction were computed to determine the interaction effect. RESULTS Among a total of 74,251 children, 192 (0.26%) were diagnosed with ASD. The adjusted odds ratio for ASD in children with BA alone was 3.82 (95% confidence interval [CI] 2.42-6.02), for FS alone 3.06 (95%CI 1.48-6.31), and for comorbid BA and FS 21.18 (95%CI 9.10-49.30), versus children without BA or FS. The additive interaction between BA and FS showed statistical significance (P < 0.001), whereas the multiplicative interaction was statistically insignificant (P > 0.05). LIMITATIONS This study can only demonstrate the relationship between the interaction of BA and FS with ASD but cannot prove causation. Animal brain experimentation is necessary to unravel its neural mechanisms. A larger sample size, ongoing monitoring, and detailed FS classification are needed for confirming BA-FS interaction in ASD. CONCLUSION In this extensive cross-sectional study, both BA and FS were significantly linked to ASD. The coexistence of these factors was associated with an additive increase in ASD prevalence, surpassing the cumulative risk of each individual factor.
Collapse
Affiliation(s)
- Yi Mao
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xindi Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuhan Wu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayi Lu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayao Shen
- Department of Nephrology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shaogen Zhong
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xingming Jin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
10
|
Mortensen JS, Bohr SSR, Krog LS, Bøtker JP, Kapousidou V, Saaby L, Hatzakis NS, Mørck Nielsen H, Nguyen DN, Rønholt S. Neonatal intestinal mucus barrier changes in response to maturity, inflammation, and sodium decanoate supplementation. Sci Rep 2024; 14:7665. [PMID: 38561398 PMCID: PMC10985073 DOI: 10.1038/s41598-024-58356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The integrity of the intestinal mucus barrier is crucial for human health, as it serves as the body's first line of defense against pathogens. However, postnatal development of the mucus barrier and interactions between maturity and its ability to adapt to external challenges in neonatal infants remain unclear. In this study, we unveil a distinct developmental trajectory of the mucus barrier in preterm piglets, leading to enhanced mucus microstructure and reduced mucus diffusivity compared to term piglets. Notably, we found that necrotizing enterocolitis (NEC) is associated with increased mucus diffusivity of our large pathogen model compound, establishing a direct link between the NEC condition and the mucus barrier. Furthermore, we observed that addition of sodium decanoate had varying effects on mucus diffusivity depending on maturity and health state of the piglets. These findings demonstrate that regulatory mechanisms governing the neonatal mucosal barrier are highly complex and are influenced by age, maturity, and health conditions. Therefore, our results highlight the need for specific therapeutic strategies tailored to each neonatal period to ensure optimal gut health.
Collapse
Affiliation(s)
- Janni Støvring Mortensen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Søren S-R Bohr
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Department of Chemistry and Nanoscience Center, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Lasse Skjoldborg Krog
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Johan Peter Bøtker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Vaya Kapousidou
- Department of Chemistry and Nanoscience Center, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Lasse Saaby
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry and Nanoscience Center, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
- NovoNordisk Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark.
| | - Stine Rønholt
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
11
|
Mukunya D, Oguttu F, Nambozo B, Nantale R, Makoko BT, Napyo A, Tumuhamye J, Wani S, Auma P, Atim K, Nahurira D, Okello D, Wamulugwa J, Ssegawa L, Wandabwa J, Kiguli S, Chebet M, Musaba MW. Decreased renal function among children born to women with obstructed labour in Eastern Uganda: a cohort study. BMC Nephrol 2024; 25:116. [PMID: 38549078 PMCID: PMC10976667 DOI: 10.1186/s12882-024-03552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Over two million children and adolescents suffer from chronic kidney disease globally. Early childhood insults such as birth asphyxia could be risk factors for chronic kidney disease in later life. Our study aimed to assess renal function among children aged two to four years, born to women with obstructed labour. METHODS We followed up 144 children aged two to four years, born to women with obstructed labor at Mbale regional referral hospital in Eastern Uganda. We used serum creatinine to calculate estimated glomerular filtration rate (eGFR) using the Schwartz formula. We defined decreased renal function as eGFR less than 90 ml/min/1.73m2. RESULTS The mean age of the children was 2.8 years, standard deviation (SD) of 0.4 years. Majority of the children were male (96/144: 66.7%). The mean umbilical lactate level at birth among the study participants was 8.9 mmol/L with a standard deviation (SD) of 5.0. eGFR of the children ranged from 55 to 163 ml/min/1.73m2, mean 85.8 ± SD 15.9. Nearly one third of the children (45/144) had normal eGFR (> 90 ml/Min/1.73m2), two thirds (97/144) had a mild decrease of eGFR (60-89 ml/Min/1.73m2), and only two children had a moderate decrease of eGFR (< 60 ml/Min/1.73m2). Overall incidence of reduced eGFR was 68.8% [(99/144): 95% CI (60.6 to 75.9)]. CONCLUSION We observed a high incidence of reduced renal function among children born to women with obstructed labour. We recommend routine follow up of children born to women with obstructed labour and add our voices to those calling for improved intra-partum and peripartum care.
Collapse
Affiliation(s)
- David Mukunya
- Department of Community and Public Health, Busitema University, Mbale, Uganda
- Department of Research, Nikao Medical Center, Kampala, Uganda
| | - Faith Oguttu
- Department of Community and Public Health, Busitema University, Mbale, Uganda.
| | - Brendah Nambozo
- Department of Community and Public Health, Busitema University, Mbale, Uganda
| | - Ritah Nantale
- Department of Obstetrics and Gynecology, Busitema University, Mbale, Uganda
- Busitema University Centre of Excellency for Maternal and Child Health, Mbale, Uganda
| | - Brian Tonny Makoko
- Department of Community and Public Health, Busitema University, Mbale, Uganda
| | - Agnes Napyo
- Department of Community and Public Health, Busitema University, Mbale, Uganda
| | | | - Solomon Wani
- Department of Community and Public Health, Busitema University, Mbale, Uganda
| | - Prossy Auma
- Mbale Regional Referral Hospital, Mbale, Uganda
| | - Ketty Atim
- Mbale Regional Referral Hospital, Mbale, Uganda
| | - Doreck Nahurira
- Department of Obstetrics and Gynecology, Busitema University, Mbale, Uganda
| | - Dedan Okello
- Department of Paediatrics and Child Health, Busitema University, Mbale, Uganda
| | | | - Lawrence Ssegawa
- Department of Research, Sanyu Africa Research Institute, Mbale, Uganda
| | - Julius Wandabwa
- Department of Obstetrics and Gynecology, Busitema University, Mbale, Uganda
| | - Sarah Kiguli
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Martin Chebet
- Department of Paediatrics and Child Health, Busitema University, Mbale, Uganda
- Department of Research, Sanyu Africa Research Institute, Mbale, Uganda
| | - Milton W Musaba
- Department of Obstetrics and Gynecology, Busitema University, Mbale, Uganda
- Busitema University Centre of Excellency for Maternal and Child Health, Mbale, Uganda
| |
Collapse
|
12
|
Liu Y, Liu NX. Correlation Study on the Prognostic Value of miR-21 and S-100B Protein Levels in Neonatal Hypoxic-Ischemic Encephalopathy Undergoing Hypothermia Therapy. Int J Neurosci 2024:1-12. [PMID: 38512134 DOI: 10.1080/00207454.2024.2334375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To evaluate the variations in serum levels of microRNA-21 (miR-21) and S-100B protein in neonates with hypoxic-ischemic encephalopathy (HIE) after receiving hypothermia therapy and explore the correlation of these biomarkers with the neurodevelopmental prognosis of the infants. METHODS This retrospective analysis included 90 neonatal HIE patients diagnosed and treated between January 2019 and December 2022. Real-time quantitative PCR and enzyme-linked immunosorbent assay (ELISA) methods were used to measure miR-21 and S-100B protein levels. Neurodevelopmental assessments were conducted at one year, and follow-up was performed using the Bayley Scales of Infant and Toddler Development third edition. Statistical analysis was carried out using SPSS software, with t-tests for continuous variables, chi-square tests for categorical data, Pearson correlation coefficient for correlation analysis, and multivariate regression analysis to adjust for confounding factors. RESULTS After hypothermia therapy, the observation group showed a significant decrease in miR-21 and S-100B protein levels (P < 0.001), and neurodevelopmental scores were significantly higher than the control group (P < 0.05). Correlation analysis indicated a negative correlation between miR-21 and neurodevelopmental scores (r=-0.62, P < 0.001), as well as a negative correlation between S-100B protein levels (r=-0.76, P < 0.001). Multivariate regression analysis demonstrated that miR-21 levels and S-100B protein levels maintained independent negative correlations with neurodevelopmental scores (P < 0.001). CONCLUSION Hypothermia therapy significantly reduces serum levels of miR-21 and S-100B protein in neonatal HIE patients and may be associated with better prognosis. miR-21 and S-100B serve as prognostic biomarkers, aiding in predicting and improving the treatment outcomes and long-term prognosis of neonatal HIE.
Collapse
Affiliation(s)
- Yan Liu
- Department of Newborn Pediatrics, Hengshui people's Hospital, Hengshui 053000, Hebei, China
| | - Nuo-Xuan Liu
- Department of Clincal, Hebei North University, Zhangjiakou 050031, Hebei, China
| |
Collapse
|
13
|
Geng J, Feng J, Ke F, Fang F, Jing X, Tang J, Fang C, Zhang B. MicroRNA-124 negatively regulates STAT3 to alleviate hypoxic-ischemic brain damage by inhibiting oxidative stress. Aging (Albany NY) 2024; 16:2828-2847. [PMID: 38319722 PMCID: PMC10911356 DOI: 10.18632/aging.205513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
MicroRNA-124 (miR-124) is implicated in various neurological diseases; however, its significance in hypoxic-ischaemic brain damage (HIBD) remains unclear. This study aimed to elucidate the underlying pathophysiological mechanisms of miR-124 in HIBD. In our study performed on oxygen-glucose deprivation followed by reperfusion (OGD)/R-induced primary cortical neurons, a substantial reduction in miR-124 was observed. Furthermore, the upregulation of miR-124 significantly mitigated oxidative stress, apoptosis, and mitochondrial impairment. We demonstrated that miR-124 interacts with the signal transducer and activator of transcription 3 (STAT3) to exert its biological function using the dual-luciferase reporter gene assay. As the duration of OGD increased, miR-124 exhibited a negative correlation with STAT3. STAT3 overexpression notably attenuated the protective effects of miR-124 mimics, while knockdown of STAT3 reversed the adverse effects of the miR-124 inhibitor. Subsequently, we conducted an HIBD model in rats. In vivo experiments, miR-124 overexpression attenuated cerebral infarction volume, cerebral edema, apoptosis, oxidative stress, and improved neurological function recovery in HIBD rats. In summary, the neuroprotective effects of the miR-124/STAT3 axis were confirmed in the HIBD model. MiR-124 may serve as a potential biomarker with significant therapeutic implications for HIBD.
Collapse
Affiliation(s)
- Jiaqing Geng
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Fangzi Ke
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Fang Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Xiaoqi Jing
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiaxin Tang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Chengzhi Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Binghong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| |
Collapse
|
14
|
Mota-Rojas D, Ghezzi MD, Hernández-Ávalos I, Domínguez-Oliva A, Casas-Alvarado A, Lendez PA, Ceriani MC, Wang D. Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals (Basel) 2024; 14:513. [PMID: 38338158 PMCID: PMC10854546 DOI: 10.3390/ani14030513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes require the participation of peripheral thermoreceptors, afferent signaling to the spinal cord and hypothalamus, and efferent pathways to motor and/or sympathetic neurons. The present review aims to analyze the scientific evidence of the hypothalamic control of hypothermia and the central and peripheral changes that are triggered in domestic animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Marcelo Daniel Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB, Tandil 7000, Buenos Aires, Argentina
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, FESC, Universidad Nacional Autónoma de México, Cuautitlán 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Pamela Anahí Lendez
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - María Carolina Ceriani
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Ogba EI, Chukwudi NK, Izuka OM, Adizua UC. Prevalence of Perinatal Asphyxia Using Apgar Scores and Cord Blood pH and the Relationship between the Two Methods: A Study of FMC Umuahia. Niger J Clin Pract 2024; 27:117-123. [PMID: 38317044 DOI: 10.4103/njcp.njcp_563_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/23/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Perinatal asphyxia contributes significantly to neonatal morbidity and mortality. It occurs worldwide, and the Apgar score is the most widely used method of diagnosis. Recently, umbilical cord arterial pH has been reported as the most objective way to assess fetal acidosis at birth as it predicts the adverse outcome of perinatal asphyxia. It is imperative to establish the concordance between these two diagnostic methods to reinforce the practicality of the Apgar score as the preferred diagnostic tool for perinatal asphyxia in developing nations, such as Nigeria. AIM To determine the prevalence of perinatal asphyxia by using the Apgar score and arterial cord blood pH and the relationships between these methods at the Federal Medical Center (FMC), Umuahia. MATERIALS AND METHODS This cross-sectional study enrolled 245-term newborns. Perinatal asphyxia was diagnosed using both Apgar scoring and arterial cord blood pH measurements. Data obtained were analyzed using SPSS version 20 and a P value < 0.05 was considered significant. RESULTS Perinatal asphyxia was reported in 33.1% and 31.4% by using the Apgar score and arterial cord blood pH, respectively. There was a moderate agreement between the two methods for diagnosing perinatal asphyxia (κ = 0.44), and no statistically significant difference was observed in the prevalence of perinatal asphyxia between these methods (McNemar's χ2 = 0.27, P = 0.699). Furthermore, a strong positive correlation was observed between the Apgar score at 1 and 5 minutes of life and arterial cord blood pH (rs = 0.87, P ≤ 0.001 and rs = 0.80, P ≤ 0.001 respectively). CONCLUSION The prevalence of perinatal asphyxia by the two methods was high, and there was no significant difference between both methods of assessing perinatal asphyxia. Thus, the diagnosis of perinatal asphyxia can effectively be made using either the Apgar score or arterial cord blood pH, affirming the practicality and reliability of the Apgar score in resource-limited healthcare settings.
Collapse
Affiliation(s)
- E I Ogba
- Department of Pediatrics, Federal Medical Center, Umuahia, Abila State, Nigeria
| | - N K Chukwudi
- Department of Pediatrics, Federal Medical Center, Umuahia, Abila State, Nigeria
| | - O M Izuka
- Department of Pediatrics, Federal Medical Center, Umuahia, Abila State, Nigeria
| | - U C Adizua
- Department of Chemical Pathology, Federal Medical Center, Umuahia, Abila State, Nigeria
| |
Collapse
|
16
|
Misser SK, Mchunu N, Lotz JW, Kjonigsen L, Ulug A, Archary M. Neuroquantification enhances the radiological evaluation of term neonatal hypoxic-ischaemic cerebral injuries. SA J Radiol 2023; 27:2728. [PMID: 38223530 PMCID: PMC10784209 DOI: 10.4102/sajr.v27i1.2728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background Injury patterns in hypoxic-ischaemic brain injury (HIBI) are well recognised but there are few studies evaluating cerebral injury using neuroquantification models. Objectives Quantification of brain volumes in a group of patients with clinically determined cerebral palsy. Method In this retrospective study, 297 children with cerebral palsy were imaged for suspected HIBI with analysis of various cerebral substrates. Of these, 96 children over the age of 3 years with a clinical diagnosis of cerebral palsy and abnormal MRI findings underwent volumetric analyses using the NeuroQuant® software solution. The spectrum of volumetric changes and the differences between the various subtypes (and individual subgroups) of HIBI were compared. Results Compared with the available normative NeuroQuant® database, the average intracranial volume was reduced to the 1st percentile in all patient groups (p < 0.001). Statistically significant differences were observed among the types and subgroups of HIBI. Further substrate volume reductions were identified and described involving the thalami, brainstem, hippocampi, putamina and amygdala. The combined volumes of five regions of interest (frontal pole, putamen, hippocampus, brainstem and paracentral lobule) were consistently reduced in the Rolandic basal ganglia-thalamus (RBGT) subtype. Conclusion This study determined a quantifiable reduction of intracranial volume in all subtypes of HIBI and predictable selective cerebral substrate volume reduction in subtypes and subgroups. In the RBGT subtype, a key combination of five substrate injuries was consistently noted, and thalamic, occipital lobe and brainstem volume reduction was also significant when compared to the watershed subtype. Contribution This study demonstrates the value of integrating an artificial intelligence programme into the radiologists' armamentarium serving to quantify brain injuries more accurately in HIBI. Going forward this will be an inevitable evolution of daily radiology practice in many fields of medicine, and it would be beneficial for radiologists to embrace these technological innovations.
Collapse
Affiliation(s)
- Shalendra K Misser
- Department of Radiology, Lake Smit and Partners Inc., Durban, South Africa
- Department of Radiology, Faculty of Health Sciences, University of KwaZulu-Natal, Duban, South Africa
| | - Nobuhle Mchunu
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
- Department of Statistics, Faculty of Science, School of Mathematics, Statistics and Computer Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Jan W Lotz
- Department of Radiodiagnosis, Faculty of Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Aziz Ulug
- Cortechs Labs, San Diego, United States of America
| | - Moherndran Archary
- Department of Pediatrics, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Kebaya LMN, Kapoor B, Mayorga PC, Meyerink P, Foglton K, Altamimi T, Nichols ES, de Ribaupierre S, Bhattacharya S, Tristao L, Jurkiewicz MT, Duerden EG. Subcortical brain volumes in neonatal hypoxic-ischemic encephalopathy. Pediatr Res 2023; 94:1797-1803. [PMID: 37353661 DOI: 10.1038/s41390-023-02695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Despite treatment with therapeutic hypothermia, hypoxic-ischemic encephalopathy (HIE) is associated with adverse developmental outcomes, suggesting the involvement of subcortical structures including the thalamus and basal ganglia, which may be vulnerable to perinatal asphyxia, particularly during the acute period. The aims were: (1) to examine subcortical macrostructure in neonates with HIE compared to age- and sex-matched healthy neonates within the first week of life; (2) to determine whether subcortical brain volumes are associated with HIE severity. METHODS Neonates (n = 56; HIE: n = 28; Healthy newborns from the Developing Human Connectome Project: n = 28) were scanned with MRI within the first week of life. Subcortical volumes were automatically extracted from T1-weighted images. General linear models assessed between-group differences in subcortical volumes, adjusting for sex, gestational age, postmenstrual age, and total cerebral volumes. Within-group analyses evaluated the association between subcortical volumes and HIE severity. RESULTS Neonates with HIE had smaller bilateral thalamic, basal ganglia and right hippocampal and cerebellar volumes compared to controls (all, p < 0.02). Within the HIE group, mild HIE severity was associated with smaller volumes of the left and right basal ganglia (both, p < 0.007) and the left hippocampus and thalamus (both, p < 0.04). CONCLUSIONS Findings suggest that, despite advances in neonatal care, HIE is associated with significant alterations in subcortical brain macrostructure. IMPACT Compared to their healthy counterparts, infants with HIE demonstrate significant alterations in subcortical brain macrostructure on MRI acquired as early as 4 days after birth. Smaller subcortical volumes impacting sensory and motor regions, including the thalamus, basal ganglia, and cerebellum, were seen in infants with HIE. Mild and moderate HIE were associated with smaller subcortical volumes.
Collapse
Affiliation(s)
- Lilian M N Kebaya
- Neuroscience program, Western University, London, ON, Canada.
- Division of Neonatal-Perinatal Medicine, Department of Paediatrics, London Health Sciences Centre, London, ON, Canada.
| | - Bhavya Kapoor
- Applied Psychology, Faculty of Education, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Paula Camila Mayorga
- Division of Neonatal-Perinatal Medicine, Department of Paediatrics, London Health Sciences Centre, London, ON, Canada
| | - Paige Meyerink
- Division of Neonatal-Perinatal Medicine, Department of Paediatrics, London Health Sciences Centre, London, ON, Canada
| | - Kathryn Foglton
- Division of Neonatal-Perinatal Medicine, Department of Paediatrics, London Health Sciences Centre, London, ON, Canada
| | - Talal Altamimi
- Division of Neonatal-Perinatal Medicine, Department of Paediatrics, London Health Sciences Centre, London, ON, Canada
- Division of Neonatal Intensive Care, Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Emily S Nichols
- Applied Psychology, Faculty of Education, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Sandrine de Ribaupierre
- Neuroscience program, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| | - Soume Bhattacharya
- Division of Neonatal-Perinatal Medicine, Department of Paediatrics, London Health Sciences Centre, London, ON, Canada
| | - Leandro Tristao
- Department of Medical Imaging, London Health Sciences Centre, London, ON, Canada
| | - Michael T Jurkiewicz
- Neuroscience program, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medical Imaging, London Health Sciences Centre, London, ON, Canada
| | - Emma G Duerden
- Neuroscience program, Western University, London, ON, Canada
- Applied Psychology, Faculty of Education, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| |
Collapse
|
18
|
Improda N, Capalbo D, Poloniato A, Garbetta G, Dituri F, Penta L, Aversa T, Sessa L, Vierucci F, Cozzolino M, Vigone MC, Tronconi GM, del Pistoia M, Lucaccioni L, Tuli G, Munarin J, Tessaris D, de Sanctis L, Salerno M. Perinatal asphyxia and hypothermic treatment from the endocrine perspective. Front Endocrinol (Lausanne) 2023; 14:1249700. [PMID: 37929024 PMCID: PMC10623321 DOI: 10.3389/fendo.2023.1249700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Perinatal asphyxia is one of the three most important causes of neonatal mortality and morbidity. Therapeutic hypothermia represents the standard treatment for infants with moderate-severe perinatal asphyxia, resulting in reduction in the mortality and major neurodevelopmental disability. So far, data in the literature focusing on the endocrine aspects of both asphyxia and hypothermia treatment at birth are scanty, and many aspects are still debated. Aim of this narrative review is to summarize the current knowledge regarding the short- and long-term effects of perinatal asphyxia and of hypothermia treatment on the endocrine system, thus providing suggestions for improving the management of asphyxiated children. Results Involvement of the endocrine system (especially glucose and electrolyte disturbances, adrenal hemorrhage, non-thyroidal illness syndrome) can occur in a variable percentage of subjects with perinatal asphyxia, potentially affecting mortality as well as neurological outcome. Hypothermia may also affect endocrine homeostasis, leading to a decreased incidence of hypocalcemia and an increased risk of dilutional hyponatremia and hypercalcemia. Conclusions Metabolic abnormalities in the context of perinatal asphyxia are important modifiable factors that may be associated with a worse outcome. Therefore, clinicians should be aware of the possible occurrence of endocrine complication, in order to establish appropriate screening protocols and allow timely treatment.
Collapse
Affiliation(s)
- Nicola Improda
- Department of Translational Medical Sciences, Paediatric Endocrinology Unit, University “Federico II”, Naples, Italy
- Department of Emergency, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Donatella Capalbo
- Department of Mother and Child, Paediatric Endocrinology Unit, University Hospital “Federico II”, Naples, Italy
| | - Antonella Poloniato
- Neonatal Intensive Care Unit, San Raffaele University Hospital, Milan, Italy
| | - Gisella Garbetta
- Neonatal Intensive Care Unit, San Raffaele University Hospital, Milan, Italy
| | - Francesco Dituri
- Pediatric and Neonatal Unit, San Paolo Hospital, Civitavecchia, Italy
| | - Laura Penta
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | - Tommaso Aversa
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Linda Sessa
- Maternal and Child Department, Neonatal Intensive Care Unit (NICU) of University Hospital San Giovanni di Dio e Ruggi d’Aragona, Salerno, Italy
| | | | | | - Maria Cristina Vigone
- Endocrine Unit, Department of Pediatrics, University Hospital San Raffaele, Milan, Italy
| | | | - Marta del Pistoia
- Division of Neonatology and Neonatal Intensive Care Unit (NICU), Department of Clinical and Experimental Medicine, Santa Chiara University Hospital, Pisa, Italy
| | - Laura Lucaccioni
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gerdi Tuli
- Pediatric Endocrinology Unit, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Jessica Munarin
- Pediatric Endocrinology Unit, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Daniele Tessaris
- Pediatric Endocrinology Unit, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Mariacarolina Salerno
- Department of Translational Medical Sciences, Paediatric Endocrinology Unit, University “Federico II”, Naples, Italy
| |
Collapse
|
19
|
Rey-Funes M, Fernández JC, Peláez R, Soliño M, Contartese DS, Ciranna NS, Nakamura R, Sarotto A, Dorfman VB, Zapico JM, Ramos A, de Pascual-Teresa B, López-Costa JJ, Larrayoz IM, Martínez A, Loidl CF. A hypothermia mimetic molecule (zr17-2) reduces ganglion cell death, gliosis, and electroretinogram distortion in male rats subjected to perinatal asphyxia. Front Pharmacol 2023; 14:1252184. [PMID: 37767403 PMCID: PMC10520548 DOI: 10.3389/fphar.2023.1252184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction: Perinatal asphyxia (PA) represents a major problem in perinatology and may cause visual losses, including blindness. We, and others, have shown that hypothermia prevents retinal symptoms associated to PA. In the present work, we evaluate whether a hypothermia mimetic small molecule, zr17-2, has similar effects in the context of PA. Methods: Four experimental groups were studied in male rats: Naturally born rats as controls (CTL), naturally born rats injected s.c. with 50 µL of 330 nmols/L zr17-2 (ZR), animals that were exposed to PA for 20 min at 37°C (PA), and rats that were exposed to PA and injected with zr17-2 (PA-ZR). Forty-five days after treatment, animals were subjected to electroretinography. In addition, morphological techniques (TUNEL, H&E, multiple immunofluorescence) were applied to the retinas. Results: A reduction in the amplitude of the a- and b-wave and oscillatory potentials (OP) of the electroretinogram (ERG) was detected in PA animals. Treatment with zr17-2 resulted in a significant amelioration of these parameters (p < 0.01). In PA animals, a large number of apoptotic cells was found in the GCL. This number was significantly reduced by treatment with the small molecule (p < 0.0001). In a similar way, the thickness of the inner retina and the intensity of GFAP immunoreactivity (gliosis) increased in PA retinas (p < 0.0001). These parameters were corrected by the administration of zr17-2 (p < 0.0001). Furthermore, injection of the small molecule in the absence of PA did not modify the ERG nor the morphological parameters studied, suggesting a lack of toxicity. Discussion: In conclusion, our results indicate that a single s.c. injection of zr17-2 in asphyctic neonates may provide a novel and efficacious method to prevent the visual sequelae of PA.
Collapse
Affiliation(s)
- Manuel Rey-Funes
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Fernández
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Manuel Soliño
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S. Contartese
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás S. Ciranna
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ronan Nakamura
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Sarotto
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B. Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - José M. Zapico
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Ana Ramos
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Juan José López-Costa
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio M. Larrayoz
- Department of Nursing, Biomarkers, Artificial Intelligence, and Signaling (BIAS), University of La Rioja, Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - César Fabián Loidl
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Mukunya D, Oguttu F, Nambozo B, Nantale R, Makoko TB, Napyo A, Tumuhamye J, Wani S, Auma P, Atim K, Okello D, Wamulugwa J, Ssegawa L, Wandabwa J, Kiguli S, Chebet M, Musaba MW, Nahurira D. Decreased renal function among children born to women with obstructed labour in Eastern Uganda: a cohort study. RESEARCH SQUARE 2023:rs.3.rs-3121633. [PMID: 37503197 PMCID: PMC10371083 DOI: 10.21203/rs.3.rs-3121633/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Over two million children and adolescents suffer from chronic kidney disease globally. Early childhood insults such as birth asphyxia could be risk factors for development of chronic kidney disease in infancy. Our study aimed to assess renal function among children aged two to four years, born to women with obstructed labour. Methods We followed up 144 children aged two to four years, born to women with obstructed labor at Mbale regional referral hospital in Eastern Uganda. We used estimated glomerular filtration rate (eGFR) by the Schwartz formula to calculate eGFR (0.413*height)/ serum creatinine as a measure of renal function. eGFR less than 90 ml/min/1.73m2 was classified as decreased renal function. Results The mean age of the children was 2.8 years, standard deviation (SD) of 0.4 years. Majority of the children were male (96/144: 66.7%). The mean umbilical lactate level at birth among the study participants was 8.9 mmol/L with a standard deviation (SD) of 5.0. eGFR values ranged from 55 to 163ml/min/1.72m2, mean 85.8 ± SD 15.9. One third (31.3%) 45/144 had normal eGFR (> 90 ml/Min/1.72m2), two thirds (67.4%) 97/144 had a mild decrease of eGFR (60-89 ml/Min/1.72m2), and only 2/144 (1.4%) had a moderate decrease of eGFR. Overall incidence of reduced eGFR was 68.8% (99/144). Conclusion We observed a high incidence of impaired renal function among children born to women with obstructed labour. We recommend routine follow up of children born to women with obstructed labour and add our voices to those calling for improved intra-partum and peripartum care.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Josephine Tumuhamye
- Busitema University Centre of Excellency for Maternal Reproductive and Child Health
| | | | | | | | | | | | | | | | - Sarah Kiguli
- Makerere University Hospital, Makerere University Kampala
| | | | | | | |
Collapse
|
21
|
Bienboire-Frosini C, Wang D, Marcet-Rius M, Villanueva-García D, Gazzano A, Domínguez-Oliva A, Olmos-Hernández A, Hernández-Ávalos I, Lezama-García K, Verduzco-Mendoza A, Gómez-Prado J, Mota-Rojas D. The Role of Brown Adipose Tissue and Energy Metabolism in Mammalian Thermoregulation during the Perinatal Period. Animals (Basel) 2023; 13:2173. [PMID: 37443971 DOI: 10.3390/ani13132173] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is one of the most common causes of mortality in neonates, and it could be developed after birth because the uterus temperature is more elevated than the extrauterine temperature. Neonates use diverse mechanisms to thermoregulate, such as shivering and non-shivering thermogenesis. These strategies can be more efficient in some species, but not in others, i.e., altricials, which have the greatest difficulty with achieving thermoneutrality. In addition, there are anatomical and neurological differences in mammals, which may present different distributions and amounts of brown fat. This article aims to discuss the neuromodulation mechanisms of thermoregulation and the importance of brown fat in the thermogenesis of newborn mammals, emphasizing the analysis of the biochemical, physiological, and genetic factors that determine the distribution, amount, and efficiency of this energy resource in newborns of different species. It has been concluded that is vital to understand and minimize hypothermia causes in newborns, which is one of the main causes of mortality in neonates. This would be beneficial for both animals and producers.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Dina Villanueva-García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| |
Collapse
|
22
|
Stroe MS, Van Bockstal L, Valenzuela A, Ayuso M, Leys K, Annaert P, Carpentier S, Smits A, Allegaert K, Zeltner A, Mulder A, Van Ginneken C, Van Cruchten S. Development of a neonatal Göttingen Minipig model for dose precision in perinatal asphyxia: technical opportunities, challenges, and potential further steps. Front Pediatr 2023; 11:1163100. [PMID: 37215599 PMCID: PMC10195037 DOI: 10.3389/fped.2023.1163100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Animal models provide useful information on mechanisms in human disease conditions, but also on exploring (patho)physiological factors affecting pharmacokinetics, safety, and efficacy of drugs in development. Also, in pediatric patients, nonclinical data can be critical for better understanding the disease conditions and developing new drug therapies in this age category. For perinatal asphyxia (PA), a condition defined by oxygen deprivation in the perinatal period and possibly resulting in hypoxic ischemic encephalopathy (HIE) or even death, therapeutic hypothermia (TH) together with symptomatic drug therapy, is the standard approach to reduce death and permanent brain damage in these patients. The impact of the systemic hypoxia during PA and/or TH on drug disposition is largely unknown and an animal model can provide useful information on these covariates that cannot be assessed separately in patients. The conventional pig is proven to be a good translational model for PA, but pharmaceutical companies do not use it to develop new drug therapies. As the Göttingen Minipig is the commonly used pig strain in nonclinical drug development, the aim of this project was to develop this animal model for dose precision in PA. This experiment consisted of the instrumentation of 24 healthy male Göttingen Minipigs, within 24 h of partus, weighing approximately 600 g, to allow the mechanical ventilation and the multiple vascular catheters inserted for maintenance infusion, drug administration and blood sampling. After premedication and induction of anesthesia, an experimental protocol of hypoxia was performed, by decreasing the inspiratory oxygen fraction (FiO2) at 15%, using nitrogen gas. Blood gas analysis was used as an essential tool to evaluate oxygenation and to determine the duration of the systemic hypoxic insult to approximately 1 h. The human clinical situation was mimicked for the first 24 h after birth in case of PA, by administering four compounds (midazolam, phenobarbital, topiramate and fentanyl), frequently used in a neonatal intensive care unit (NICU). This project aimed to develop the first neonatal Göttingen Minipig model for dose precision in PA, allowing to separately study the effect of systemic hypoxia versus TH on drug disposition. Furthermore, this study showed that several techniques that were thought to be challenging or even impossible in these very small animals, such as endotracheal intubation and catheterization of several veins, are feasible by trained personnel. This is relevant information for laboratories using the neonatal Göttingen Minipig for other disease conditions or drug safety testing.
Collapse
Affiliation(s)
| | | | - Allan Valenzuela
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium
| | - Miriam Ayuso
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium
| | - Karen Leys
- Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
- BioNotus GCV, Niel, Belgium
| | | | - Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, Netherlands
| | | | - Antonius Mulder
- Neonatal Intensive Care Unit, Antwerp University Hospital, Antwerp, Belgium
| | - Chris Van Ginneken
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
23
|
Szenci O. Importance of Monitoring Fetal and Neonatal Vitality in Bovine Practices. Animals (Basel) 2023; 13:ani13061081. [PMID: 36978622 PMCID: PMC10044070 DOI: 10.3390/ani13061081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Prior to initiating any obstetrical intervention for anterior or posterior presentation, it is imperative to emphasize the need for a precise and accurate diagnosis of fetal viability and to select the most appropriate approach for assistance. In uncertain cases, diagnostic tools such as ultrasonography, pulse oximeter, or measurement of acid-base balance or lactate concentration may be employed to confirm the diagnosis. In situations of severe asphyxia, a cesarean section is preferred over traction, even if the duration of asphyxia is less than 60 s, to maximize the likelihood of the survival of the fetus. Postcalving, several vitality scores have been proposed to evaluate the vigor of the newborn calf. Originally, four different clinical signs were recommended for assessing the well-being of newborn calves. Subsequently, five or more different clinical signs were recommended to evaluate vitality. However, despite the efforts for devising a practical tool to assess newborn calf vitality; a user-friendly and highly accurate instrument that can be used on farms remains elusive. Measuring the acid-base balance or lactate concentration may increase the diagnostic accuracy. It is critical to emphasize the importance of reducing the incidence of dystocia to mitigate the occurrence of severe asphyxia. In instances where asphyxia is unavoidable, adequate treatments should be administered to minimize losses.
Collapse
Affiliation(s)
- Ottó Szenci
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine Budapest, Dóra Major, H-2225 Üllő, Hungary
| |
Collapse
|
24
|
Marcet-Rius M, Bienboire-Frosini C, Lezama-García K, Domínguez-Oliva A, Olmos-Hernández A, Mora-Medina P, Hernández-Ávalos I, Casas-Alvarado A, Gazzano A. Clinical Experiences and Mechanism of Action with the Use of Oxytocin Injection at Parturition in Domestic Animals: Effect on the Myometrium and Fetuses. Animals (Basel) 2023; 13:ani13040768. [PMID: 36830555 PMCID: PMC9952595 DOI: 10.3390/ani13040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Oxytocin is a key hormone for parturition and maternal traits in animals. During the peripartum period, the levels of endogenous oxytocin dictate physiological events such as myometrial contractions, prostaglandin production with the subsequent increase in oxytocin receptors, and the promotion of lactation when administered immediately after birth. While this hormone has some benefits regarding these aspects, the exogenous administration of oxytocin has been shown to have detrimental effects on the fetus, such as asphyxia, meconium staining, ruptured umbilical cords, and more dystocia cases in females. This review aims to analyze the main effects of oxytocin on myometrial activity during parturition, and its potential favorable and negative administration effects reflected in the fetus health of domestic animals. In conclusion, it is convenient to know oxytocin's different effects as well as the adequate doses and the proper moment to administrate it, as it can reduce labor duration, but it can also increase dystocia.
Collapse
Affiliation(s)
- Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
- Correspondence: (M.M.-R.); (A.D.-O.)
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
- Correspondence: (M.M.-R.); (A.D.-O.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
25
|
Pluta R, Furmaga-Jabłońska W, Januszewski S, Tarkowska A. Melatonin: A Potential Candidate for the Treatment of Experimental and Clinical Perinatal Asphyxia. Molecules 2023; 28:1105. [PMID: 36770769 PMCID: PMC9919754 DOI: 10.3390/molecules28031105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Perinatal asphyxia is considered to be one of the major causes of brain neurodegeneration in full-term newborns. The worst consequence of perinatal asphyxia is neurodegenerative brain damage, also known as hypoxic-ischemic encephalopathy. Hypoxic-ischemic encephalopathy is the leading cause of mortality in term newborns. To date, due to the complex mechanisms of brain damage, no effective or causal treatment has been developed that would ensure complete neuroprotection. Although hypothermia is the standard of care for hypoxic-ischemic encephalopathy, it does not affect all changes associated with encephalopathy. Therefore, there is a need to develop effective treatment strategies, namely research into new agents and therapies. In recent years, it has been pointed out that natural compounds with neuroprotective properties, such as melatonin, can be used in the treatment of hypoxic-ischemic encephalopathy. This natural substance with anti-inflammatory, antioxidant, anti-apoptotic and neurofunctional properties has been shown to have pleiotropic prophylactic or therapeutic effects, mainly against experimental brain neurodegeneration in hypoxic-ischemic neonates. Melatonin is a natural neuroprotective hormone, which makes it promising for the treatment of neurodegeneration after asphyxia. It is supposed that melatonin alone or in combination with hypothermia may improve neurological outcomes in infants with hypoxic-ischemic encephalopathy. Melatonin has been shown to be effective in the last 20 years of research, mainly in animals with perinatal asphyxia but, so far, no clinical trials have been performed on a sufficient number of newborns. In this review, we summarize the advantages and limitations of melatonin research in the treatment of experimental and clinical perinatal asphyxia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Ecotech-Complex Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Marie Curie-Skłodowska University in Lublin, 20-612 Lublin, Poland
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
26
|
Meconium Aspiration Syndrome in Animal Models: Inflammatory Process, Apoptosis, and Surfactant Inactivation. Animals (Basel) 2022; 12:ani12233310. [PMID: 36496831 PMCID: PMC9740025 DOI: 10.3390/ani12233310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Meconium Aspiration Syndrome is a condition that causes respiratory distress in newborns due to occlusion and airway inflammation, and surfactant inactivation by meconium. This condition has been described in animal species such as canids, sheep, cattle, horses, pigs, and marine mammals. In its pathogenesis, the pulmonary epithelium activates a limited inflammatory response initiated by cytokines causing leukocyte chemotaxis, inhibition of phagocytosis, and pathogen destruction. Likewise, cytokines release participates in the apoptosis processes of pneumocytes due to the interaction of angiotensin with cytokines and the caspase pathway. Due to these reactions, the prevalent signs are lung injury, hypoxia, acidosis, and pneumonia with susceptibility to infection. Given the importance of the pathophysiological mechanism of meconium aspiration syndrome, this review aims to discuss the relevance of the syndrome in veterinary medicine. The inflammatory processes caused by meconium aspiration in animal models will be analyzed, and the cellular apoptosis and biochemical processes of pulmonary surfactant inactivation will be discussed.
Collapse
|
27
|
Animal Welfare Compromises Associated with Causes of Death in Neonatal Piglets. Animals (Basel) 2022; 12:ani12212933. [PMID: 36359057 PMCID: PMC9658477 DOI: 10.3390/ani12212933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The pre-weaning piglet mortality percentage is a commonly reported metric on commercial pig farms. The mortality percentage tells us how many piglets died, but not what their welfare status was as it relates to their cause of death. This pilot study aimed to evaluate the likely experience of piglets that died, following confirmation of the cause of death via postmortem investigation. The Five Domains Model was then used to collate scientific evidence of the likely experience of these piglets before death from acute disease, starvation, crushing, savaging and euthanasia, to understand the impact of different causes on their welfare. The resulting findings raised the question of differentiating ‘smothering’ as a cause of death from ‘crushing,’, and that co-morbidities (such as hypothermia) may alter the welfare experience due to their influence on consciousness before death. Abstract This pilot study aimed to assess the welfare impacts of different causes of pre-weaning deaths in piglets. Piglets that died between 0–7 days after birth (n = 106) were collected from two commercial pig farms and subject to post-mortem examination to confirm their cause of death as well as any contributing factors. Using the Five Domains Model, the most likely affective experiences associated with the pathological findings were carefully inferred to better understand affective experience as it related to known causes of liveborn piglet mortality. The most common causes of liveborn piglet mortality were starvation (23%), crushing (23%) and non-viable (21%). Thirty one piglets had evidence of starvation, but it was only considered the primary cause of death in 15 piglets, as cofactors such as poor viability (n = 13) were also present in many piglets with evidence of starvation. All 15 piglets that were crushed died within 24 h after birth and most had evidence of thoracic and/or abdominal internal bleeding. This study found that common causes of liveborn piglet death were associated with compromises in Domains 1 (Nutrition/hydration), 3 (Health/function), and4 (Behavioural interactions), with the most likely resulting affective states described in Domain 5 (Mental state). This highlights the interaction between physical/functional and situation-related (behavioural) aspects that influence an animals’ welfare status.
Collapse
|
28
|
Analgesia during Parturition in Domestic Animals: Perspectives and Controversies on Its Use. Animals (Basel) 2022; 12:ani12192686. [PMID: 36230426 PMCID: PMC9558556 DOI: 10.3390/ani12192686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
This article analyzes the physiological role of pain during parturition in domestic animals, discusses the controversies surrounding the use of opioids, non-steroidal anti-inflammatory drugs (NSAIDs), and local analgesics as treatments during labor, and presents the advantages and disadvantages for mother and offspring. Labor is a potentially stressful and painful event, due to the contractions that promote expulsion of the fetus. During labor, neurotransmitters such as the prostaglandins contribute to the sensitization of oxytocin receptors in the myometrium and the activation of nociceptive fibers, thus supporting the physiological role of pain. Endogenously, the body secretes opioid peptides that modulate harmful stimuli and, at the same time, can inhibit oxytocin's action in the myometrium. Treating pain during the different stages of parturition is an option that can help prevent such consequences as tachycardia, changes in breathing patterns, and respiratory acidosis, all of which can harm the wellbeing of offspring. However, studies have found that some analgesics can promote myometrial contractility, increase expulsion time, affect fetal circulation, and alter mother-offspring recognition due to hypnotic effects. Other data, however, indicate that reducing the number of uterine contractions with analgesics increases their potency, thus improving maternal performance. Managing pain during labor requires understanding the tocolytic properties of analgesics and their advantages in preventing the consequences of pain.
Collapse
|
29
|
Early Blood Analysis and Gas Exchange Monitoring in the Canine Neonate: Effect of Dam’s Size and Birth Order. Animals (Basel) 2022; 12:ani12121508. [PMID: 35739844 PMCID: PMC9219424 DOI: 10.3390/ani12121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The complications that are observed during parturition are events that affect the vitality of the newborn and can also compromise their health by predisposing them to fetal hypoxia, increasing newborn mortality. Blood gas analysis to measure the main biomarkers associated with hypoxia evaluates the physiological and metabolic alterations derived from this state, and these could help identify if said markers respond to maternal or neonatal causes. This study aimed to assess the effect of the dam’s size, the birth order, and the presentation of blood gas alterations. Recognizing if these elements are intertwined may enhance newborns’ life expectancy by enabling the planning of a perinatal protocol to avoid serious metabolic consequences that are derived from prolonged hypoxia. Abstract In canines, size at birth is determined by the dam’s weight, which would probably affect the newborn’s viability due to litter size and birth order. Fetal hypoxia causes distress and acidemia. Identifying physiological blood alterations in the puppy during the first minute of life through the blood gas exchange of the umbilical cord could determine the puppy’s risk of suffering asphyxiation during labor. This study aimed to evaluate the effect of the birth order and dam’s size during spontaneous labor and the alterations during the first minute of life. The results indicate that the dam’s size and the birth order have considerable physiological and metabolic effects in the puppies, mainly in birth order 1 (BO1) in small-size dogs, while in the medium size, the last puppy presented more alterations, probably because of a prolonged whelping which could have fostered hypoxic processes and death. Likewise, with large-size dogs, intrapartum asphyxiation processes were registered during the first minute of life in any birth order.
Collapse
|
30
|
Mike JK, Wu KY, White Y, Pathipati P, Ndjamen B, Hutchings RS, Losser C, Vento C, Arellano K, Vanhatalo O, Ostrin S, Windsor C, Ha J, Alhassen Z, Goudy BD, Vali P, Lakshminrusimha S, Gobburu JVS, Long-Boyle J, Chen P, Wu YW, Fineman JR, Ferriero DM, Maltepe E. Defining longer term outcomes in an ovine model of moderate perinatal hypoxia-ischemia. Dev Neurosci 2022; 44:277-294. [PMID: 35588703 DOI: 10.1159/000525150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the leading cause of neonatal morbidity and mortality worldwide. Approximately 1 million infants born with HIE each year survive with cerebral palsy (CP) and/or serious cognitive disabilities. While infants born with mild and severe HIE frequently result in predictable outcomes, infants born with moderate HIE exhibit variable outcomes that are highly unpredictable. Here, we describe an umbilical cord occlusion (UCO) model of moderate HIE with a 6-day follow-up. Near term lambs (n=27) are resuscitated after the induction of 5 minutes of asystole. Following recovery, lambs are assessed to define neurodevelopmental outcomes. At the end of this period, lambs are euthanized, and brains harvested for histological analysis. Compared with prior models that typically follow lambs for 3 days, the observation of neurobehavioral outcomes for 6 days enables identification of animals that recover significant neurological function. Approximately 35 % of lambs exhibited severe motor deficits throughout the entirety of the 6-day course and, in the most severely affected lambs, developed spastic diparesis similar to that observed in infants who survive severe neonatal HIE (severe, UCOs). Importantly, and similar to outcomes in human neonates, while initially developing significant acidosis and encephalopathy, the remainder of the lambs in this model recovered normal motor activity and exhibited normal neurodevelopmental outcomes by 6 days of life (improved, UCOi). The UCOs group exhibited gliosis and inflammation in both white and gray matter, oligodendrocyte loss, and neuronal loss and cellular death in the hippocampus and cingulate cortex. While the UCOi group exhibited more cellular death and gliosis in the parasagittal cortex and demonstrated more preserved white matter markers, along with reduced markers of inflammation and lower cellular death and neuronal loss in Ca3 of the hippocampus compared with UCOs lambs. Our large animal model of moderate HIE with prolonged follow-up will help further define pathophysiologic drivers of brain injury while enabling identification of predictive biomarkers that correlate with disease outcomes and ultimately help support development of therapeutic approaches to this challenging clinical scenario.
Collapse
Affiliation(s)
- Jana Krystofova Mike
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Katherine Y Wu
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Yasmine White
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Praneeti Pathipati
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Blaise Ndjamen
- Histology and Microscopy Core, Gladstone Institutes University of California San Francisco, San Francisco, California, USA
| | - Rachel S Hutchings
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Courtney Losser
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Christian Vento
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Kimberly Arellano
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Oona Vanhatalo
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Samuel Ostrin
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Christine Windsor
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Janica Ha
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Ziad Alhassen
- Department of Pediatrics, University of California Davis, Davis, California, USA
| | - Brian D Goudy
- Department of Pediatrics, University of California Davis, Davis, California, USA
| | - Payam Vali
- Department of Pediatrics, University of California Davis, Davis, California, USA
| | | | - Jogarao V S Gobburu
- School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Initiative for Pediatric Drug and Device Development, San Francisco, California, USA
| | - Janel Long-Boyle
- Initiative for Pediatric Drug and Device Development, San Francisco, California, USA
- School of Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Peggy Chen
- Department of Pediatrics, University of California Davis, Davis, California, USA
| | - Yvonne W Wu
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Initiative for Pediatric Drug and Device Development, San Francisco, California, USA
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Initiative for Pediatric Drug and Device Development, San Francisco, California, USA
- Department of Biomedical Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|