1
|
Doyle SE, Cazzola CN, Coleman CM. Design considerations when creating a high throughput screen-compatible in vitro model of osteogenesis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100184. [PMID: 39313131 DOI: 10.1016/j.slasd.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Inducing osteogenic differentiation in vitro is useful for the identification and development of bone regeneration therapies as well as modelling bone disorders. To couple in vitro models with high throughput screening techniques retains the assay's relevance in research while increasing its therapeutic impact. Miniaturizing, automating and/or digitalizing in vitro assays will reduce the required quantity of cells, biologic stimulants, culture/output assay reagents, time and cost. This review highlights the design and workflow considerations for creating a high throughput screen-compatible model of osteogenesis, comparing and contrasting osteogenic cell type, assay fabrication and culture methodology, osteogenic induction approach and repurposing existing output techniques.
Collapse
Affiliation(s)
- Stephanie E Doyle
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland.
| | - Courtney N Cazzola
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland
| | - Cynthia M Coleman
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland
| |
Collapse
|
2
|
Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B 2023; 11:11405-11425. [PMID: 38010166 DOI: 10.1039/d3tb01874a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Zinc (Zn) is one of the most important trace elements in the human body and plays a key role in various physiological processes, especially in bone metabolism. Zn-containing materials have been reported to enhance bone repair through promoting cell proliferation, osteogenic activity, angiogenesis, and inhibiting osteoclast differentiation. Therefore, Zn-based biomaterials are potential substitutes for traditional bone grafts. In this review, the specific mechanisms of bone formation promotion by Zn-based biomaterials were discussed, and recent developments in their application in bone tissue engineering were summarized. Moreover, the challenges and perspectives of Zn-based biomaterials were concluded, revealing their attractive potential and development directions in the future.
Collapse
Affiliation(s)
- Xinyu Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Karagyaur M, Primak A, Efimenko A, Skryabina M, Tkachuk V. The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells 2022; 11:cells11203235. [PMID: 36291103 PMCID: PMC9599997 DOI: 10.3390/cells11203235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Modern society faces many biomedical challenges that require urgent solutions. Two of the most important include the elucidation of mechanisms of socially significant diseases and the development of prospective drug treatments for these diseases. Experimental cell models are a convenient tool for addressing many of these problems. The power of cell models is further enhanced when combined with gene technologies, which allows the examination of even more subtle changes within the structure of the genome and permits testing of proteins in a native environment. The list and possibilities of these recently emerging technologies are truly colossal, which requires a rethink of a number of approaches for obtaining experimental cell models. In this review, we analyze the possibilities and limitations of promising gene technologies for obtaining cell models, and also give recommendations on the development and creation of relevant models. In our opinion, this review will be useful for novice cell biologists, as it provides some reference points in the rapidly growing universe of gene and cell technologies.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
- Correspondence:
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vsevolod Tkachuk
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| |
Collapse
|