1
|
Wang L, Clark EA, Hanratty L, Koblan KS, Foley A, Dedic N, Bristow LJ. TAAR1 and 5-HT 1B receptor agonists attenuate autism-like irritability and aggression in rats prenatally exposed to valproic acid. Pharmacol Biochem Behav 2024; 245:173862. [PMID: 39197535 DOI: 10.1016/j.pbb.2024.173862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Despite the rising prevalence of autism spectrum disorder (ASD), there remains a significant unmet need for pharmacotherapies addressing its core and associative symptoms. While some atypical antipsychotics have been approved for managing associated irritability and aggression, their use is constrained by substantial side effects. This study aimed firstly to develop behavioral measures to explore frustration, irritability and aggression phenotypes in the rat prenatal valproic acid (VPA) model of ASD. Additionally, we investigated the potential of two novel mechanisms, 5-HT1B and TAAR1 agonism, to alleviate these behaviors. Male offspring exposed to prenatal VPA were trained to achieve stable performance on a cued operant task, followed by pharmacological assessment in an operant frustration test, bottle brush test and resident intruder test. VPA exposed rats demonstrated behaviors indicative of frustration and irritability, as well as increased aggression compared to controls. The irritability-like behavior and aggression were further exacerbated in animals previously experiencing a frustrative event during the operant test. Single administration of the 5-HT1B agonist CP-94253 or TAAR1 agonist RO5263397 attenuated the frustration-like behavior compared to vehicle. Additionally, both agonists reduced irritability-like behavior under both normal and frustrative conditions. While CP-94253 reduced aggression in the resident intruder test under both conditions, RO5263397 only produced effects in rats that previously experienced a frustrative event. Our study describes previously uncharacterized phenotypes of frustration, irritability, and aggression in the rat prenatal VPA model of ASD. Administration of selective TAAR1 or 5-HT1B receptor agonists alleviated these deficits, warranting further exploration of both targets in ASD treatment.
Collapse
Affiliation(s)
- Lien Wang
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | - Erin A Clark
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | | | | | | | - Nina Dedic
- Sumitomo Pharma America, Inc., Marlborough, MA, USA.
| | | |
Collapse
|
2
|
Ricarte M, Tagkalidou N, Bellot M, Bedrossiantz J, Prats E, Gomez-Canela C, Garcia-Reyero N, Raldúa D. Short- and Long-Term Neurobehavioral Effects of Developmental Exposure to Valproic Acid in Zebrafish. Int J Mol Sci 2024; 25:7688. [PMID: 39062930 PMCID: PMC11277053 DOI: 10.3390/ijms25147688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and communication, anxiety, hyperactivity, and interest restricted to specific subjects. In addition to the genetic factors, multiple environmental factors have been related to the development of ASD. Animal models can serve as crucial tools for understanding the complexity of ASD. In this study, a chemical model of ASD has been developed in zebrafish by exposing embryos to valproic acid (VPA) from 4 to 48 h post-fertilization, rearing them to the adult stage in fish water. For the first time, an integrative approach combining behavioral analysis and neurotransmitters profile has been used for determining the effects of early-life exposure to VPA both in the larval and adult stages. Larvae from VPA-treated embryos showed hyperactivity and decreased visual and vibrational escape responses, as well as an altered neurotransmitters profile, with increased glutamate and decreased acetylcholine and norepinephrine levels. Adults from VPA-treated embryos exhibited impaired social behavior characterized by larger shoal sizes and a decreased interest for their conspecifics. A neurotransmitter analysis revealed a significant decrease in dopamine and GABA levels in the brain. These results support the potential predictive validity of this model for ASD research.
Collapse
Affiliation(s)
- Marina Ricarte
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Niki Tagkalidou
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| | - Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| | - Eva Prats
- Research and Development Center (CID-CSIC), 08034 Barcelona, Spain;
| | - Cristian Gomez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Natalia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology (IGBB), Mississippi State University, Starkville, MS 39762, USA;
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| |
Collapse
|
3
|
Finszter CK, Kemecsei R, Zachar G, Ádám Á, Csillag A. Gestational VPA exposure reduces the density of juxtapositions between TH+ axons and calretinin or calbindin expressing cells in the ventrobasal forebrain of neonatal mice. Front Neuroanat 2024; 18:1426042. [PMID: 39026519 PMCID: PMC11254666 DOI: 10.3389/fnana.2024.1426042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Gestational exposure to valproic acid (VPA) is a valid rodent model of human autism spectrum disorder (ASD). VPA treatment is known to bring about specific behavioral deficits of sociability, matching similar alterations in human autism. Previous quantitative morphometric studies from our laboratory showed a marked reduction and defasciculation of the mesotelencephalic dopaminergic pathway of VPA treated mice, along with a decrease in tissue dopamine in the nucleus accumbens (NAc), but not in the caudatoputamen (CPu). In the present study, the correlative distribution of tyrosine hydroxylase positive (TH+) putative axon terminals, presynaptic to the target neurons containing calretinin (CR) or calbindin (CB), was assessed using double fluorescent immunocytochemistry and confocal laser microscopy in two dopamine recipient forebrain regions, NAc and olfactory tubercle (OT) of neonatal mice (mothers injected with VPA on ED13.5, pups investigated on PD7). Representative image stacks were volumetrically analyzed for spatial proximity and abundance of presynaptic (TH+) and postsynaptic (CR+, CB+) structures with the help of an Imaris (Bitplane) software. In VPA mice, TH/CR juxtapositions were reduced in the NAc, whereas the TH/CB juxtapositions were impoverished in OT. Volume ratios of CR+ and CB+ elements remained unchanged in NAc, whereas that of CB+ was markedly reduced in OT; here the abundance of TH+ axons was also diminished. CR and CB were found to partially colocalize with TH in the VTA and SN. In VPA exposed mice, the abundance of CR+ (but not CB+) perikarya increased both in VTA and SN, however, this upregulation was not mirrored by an increase of the number of CR+/TH+ double labeled cells. The observed reduction of total CB (but not of CB+ perikarya) in the OT of VPA exposed animals signifies a diminished probability of synaptic contacts with afferent TH+ axons, presumably by reducing the available synaptic surface. Altered dopaminergic input to ventrobasal forebrain targets during late embryonic development will likely perturb the development and consolidation of neural and synaptic architecture, resulting in lasting changes of the neuronal patterning (detected here as reduced synaptic input to dopaminoceptive interneurons) in ventrobasal forebrain regions specifically involved in motivation and reward.
Collapse
Affiliation(s)
| | | | | | | | - András Csillag
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024; 15:1333717. [PMID: 38979496 PMCID: PMC11228311 DOI: 10.3389/fpsyt.2024.1333717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Autism spectrum disorder (ASD1) is a behaviorally defined syndrome encompassing a markedly heterogeneous patient population. Many ASD subjects fail to respond to the 1st line behavioral and pharmacological interventions, leaving parents to seek out other treatment options. Evidence supports that neuroinflammation plays a role in ASD pathogenesis. However, the underlying mechanisms likely vary for each ASD patient, influenced by genetic, epigenetic, and environmental factors. Although anti-inflammatory treatment measures, mainly based on metabolic changes and oxidative stress, have provided promising results in some ASD subjects, the use of such measures requires the careful selection of ASD subjects based on clinical and laboratory findings. Recent progress in neuroscience and molecular immunology has made it possible to allow re-purposing of currently available anti-inflammatory medications, used for autoimmune and other chronic inflammatory conditions, as treatment options for ASD subjects. On the other hand, emerging anti-inflammatory medications, including biologic and gate-keeper blockers, exert powerful anti-inflammatory effects on specific mediators or signaling pathways. It will require both a keen understanding of the mechanisms of action of such agents and the careful selection of ASD patients suitable for each treatment. This review will attempt to summarize the use of anti-inflammatory agents already used in targeting ASD patients, and then emerging anti-inflammatory measures applicable for ASD subjects based on scientific rationale and clinical trial data, if available. In our experience, some ASD patients were treated under diagnoses of autoimmune/autoinflammatory conditions and/or post-infectious neuroinflammation. However, there are little clinical trial data specifically for ASD subjects. Therefore, these emerging immunomodulating agents for potential use for ASD subjects will be discussed based on preclinical data, case reports, or data generated in patients with other medical conditions. This review will hopefully highlight the expanding scope of immunomodulating agents for treating neuroinflammation in ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers University-Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS. The brain serotonin system in autism. Rev Neurosci 2024; 35:1-20. [PMID: 37415576 DOI: 10.1515/revneuro-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.
Collapse
Affiliation(s)
- Alexander Ya Rodnyy
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Elena M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Dmitry A Kudlay
- NRC Institute of Immunology FMBA of Russia, Kashirskoe Highway 24, Moscow 115522, Russia
- Sechenov's University, 8-2 Trubetskaya Str., Moscow 119991, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Um KB, Kwak S, Cheon SH, Kim J, Hwang SK. AST-001 Improves Social Deficits and Restores Dopamine Neuron Activity in a Mouse Model of Autism. Biomedicines 2023; 11:3283. [PMID: 38137504 PMCID: PMC10741043 DOI: 10.3390/biomedicines11123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impaired social communication and social interaction, restricted and repetitive behavior, and interests. The core symptoms of ASD are associated with deficits in mesocorticolimbic dopamine pathways that project from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). AST-001 is an investigational product currently in a phase 3 clinical trial for treating the core symptoms of ASD, with L-serine as the API (active pharmaceutical ingredient). Because the causes of ASD are extremely heterogeneous, a single genetic ASD model cannot represent all autism models. In this paper, we used the VPA-exposed model, which is more general and widely used than a single genetic model, but this is also one of the animal models of autism. Herein, we conducted experiments to demonstrate the efficacy of AST-001 as L-Serine that alters the regulation of the firing rate in dopamine neurons by inhibiting small conductance Ca2+-activated K+ channels (SK channels). Through these actions, AST-001 improved sociability and social novelty by rescuing the intrinsic excitabilities of dopamine neurons in VPA-exposed ASD mouse models that showed ASD-related behavioral abnormalities. It is thought that this effect of improving social deficits in VPA-exposed ASD mouse models is due to AST-001 normalizing aberrant SK channel activities that slowed VTA dopamine neuron firing. Overall, these findings suggest that AST-001 may be a potential therapeutic agent for ASD patients, and that its mechanism of action may involve the regulation of dopamine neuron activity and the improvement of social interaction.
Collapse
Affiliation(s)
- Ki Bum Um
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - Soyoung Kwak
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - Sun-Ha Cheon
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - JuHyun Kim
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - Su-Kyeong Hwang
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
7
|
D'Antoni S, Schiavi S, Buzzelli V, Giuffrida S, Feo A, Ascone F, Busceti CL, Nicoletti F, Trezza V, Catania MV. Group I and group II metabotropic glutamate receptors are upregulated in the synapses of infant rats prenatally exposed to valproic acid. Psychopharmacology (Berl) 2023; 240:2617-2629. [PMID: 37707611 PMCID: PMC10640443 DOI: 10.1007/s00213-023-06457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
RATIONALE Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted/stereotyped behavior. Prenatal exposure to valproic acid (VPA) is associated with an increased risk of developing ASD in humans and autistic-like behaviors in rodents. Increasing evidence indicates that dysfunctions of glutamate receptors at synapses are associated with ASD. In the VPA rat model, an involvement of glutamate receptors in autism-like phenotypes has been suggested; however, few studies were carried out on metabotropic glutamate (mGlu) receptors. OBJECTIVES We examined the protein expression levels of group I (mGlu1 and mGlu5) and group II (mGlu2/3) mGlu receptors in rats prenatally exposed to VPA and evaluated the effect of mGlu receptor modulation on an early autism-like phenotype in these animals. METHODS We used western blotting analysis on synaptosomes obtained from forebrain of control and VPA rats at different ages (postnatal day P13, 35, 90) and carried out ultrasonic vocalization (USV) emission test in infant control and VPA rats. RESULTS The expression levels of all these receptors were significantly increased in infant VPA rats. No changes were detected in adolescent and adult rats. An acute treatment with the preferential mGlu2/3 antagonist, LY341495, attenuated the impairment in the USV emission in VPA rats. No effect was observed after a treatment with the mGlu5 selective antagonist, MTEP. CONCLUSIONS Our findings demonstrate that the expression of group I and group II mGlu receptors is upregulated at synapses of infant VPA rats and suggest that mGlu2/3 receptor modulation may have a therapeutic potential in ASD.
Collapse
Affiliation(s)
- Simona D'Antoni
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Valeria Buzzelli
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Samuele Giuffrida
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Alessandro Feo
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Fabrizio Ascone
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
8
|
Pavăl D. The dopamine hypothesis of autism spectrum disorder: A comprehensive analysis of the evidence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:1-42. [PMID: 37993174 DOI: 10.1016/bs.irn.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite intensive research into the etiopathogenesis of autism spectrum disorder (ASD), limited progress has been achieved so far. Among the plethora of models seeking to clarify how ASD arises, a coherent dopaminergic model was lacking until recently. In 2017, we provided a theoretical framework that we designated "the dopamine hypothesis of ASD". In the meantime, numerous studies yielded empirical evidence for this model. 4 years later, we provided a second version encompassing a refined and reconceptualized framework that accounted for these novel findings. In this chapter, we will review the evidence backing the previous versions of our model and add the most recent developments to the picture. Along these lines, we intend to lay out a comprehensive analysis of the supporting evidence for the dopamine hypothesis of ASD.
Collapse
Affiliation(s)
- Denis Pavăl
- The Romanian Association for Autoimmune Encephalitis, Cluj-Napoca, Romania; Department of Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
9
|
Vogel A, Ueberbach T, Wilken-Schmitz A, Hahnefeld L, Franck L, Weyer MP, Jungenitz T, Schmid T, Buchmann G, Freudenberg F, Brandes RP, Gurke R, Schwarzacher SW, Geisslinger G, Mittmann T, Tegeder I. Repetitive and compulsive behavior after Early-Life-Pain associated with reduced long-chain sphingolipid species. Cell Biosci 2023; 13:155. [PMID: 37635256 PMCID: PMC10463951 DOI: 10.1186/s13578-023-01106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother. RESULTS ELP caused cortical hyperexcitability at P8-9 as assessed via multi-electrode array recordings that coincided with reduced expression of synaptic genes (RNAseq) including Grin2b, neurexins, piccolo and voltage gated calcium and sodium channels. Young adult (8-16 wks) Avil-ChR2 mice presented with nociceptive hypersensitivity upon heat or mechanical stimulation, which did not resolve up until one year of age. The persistent hypersensitivy to nociceptive stimuli was reflected by increased calcium fluxes in primary sensory neurons of aged mice (1 year) upon capsaicin stimulation. Avil-ChR2 mice behaved like controls in maze tests of anxiety, social interaction, and spatial memory but IntelliCage behavioral studies revealed repetitive nosepokes and corner visits and compulsive lickings. Compulsiveness at the behavioral level was associated with a reduction of sphingomyelin species in brain and plasma lipidomic studies. Behavioral studies were done with female mice. CONCLUSION The results suggest that ELP may predispose to chronic "pain" and compulsive psychopathology in part mediated by alterations of sphingolipid metabolism, which have been previously described in the context of addiction and psychiatric diseases.
Collapse
Affiliation(s)
- Alexandra Vogel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Timo Ueberbach
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Luisa Franck
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Partner Site Frankfurt, German Cancer Consortium (DKTK), Frankfurt, Germany
| | - Giulia Buchmann
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University Hospital, Frankfurt, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
10
|
Finszter CK, Kemecsei R, Zachar G, Holtkamp S, Echevarría D, Adorján I, Ádám Á, Csillag A. Early cellular and synaptic changes in dopaminoceptive forebrain regions of juvenile mice following gestational exposure to valproate. Front Neuroanat 2023; 17:1235047. [PMID: 37603782 PMCID: PMC10435871 DOI: 10.3389/fnana.2023.1235047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
Gestational exposure of mice to valproic acid (VPA) is one currently used experimental model for the investigation of typical failure symptoms associated with autism spectrum disorder (ASD). In the present study we hypothesized that the reduction of dopaminergic source neurons of the VTA, followed by perturbed growth of the mesotelencephalic dopamine pathway (MT), should also modify pattern formation in the dopaminoceptive target regions (particularly its mesoaccumbens/mesolimbic portion). Here, we investigated VPA-evoked cellular morphological (apoptosis-frequency detected by Caspase-3, abundance of Ca-binding proteins, CaBP), as well as synaptic proteomic (western blotting) changes, in selected dopaminoceptive subpallial, as compared to pallial, regions of mice, born to mothers treated with 500 mg/kg VPA on day 13.5 of pregnancy. We observed a surge of apoptosis on VPA treatment in nearly all investigated subpallial and pallial regions; with a non-significant trend of similar increase the nucleus accumbens (NAc) at P7, the age at which the MT pathway reduction has been reported (also supplemented by current findings). Of the CaBPs, calretinin (CR) expression was decreased in pallial regions, most prominently in retrosplenial cortex, but not in the subpallium of P7 mice. Calbindin-D 28K (CB) was selectively reduced in the caudate-putamen (CPu) of VPA exposed animals at P7 but no longer at P60, pointing to a potency of repairment. The VPA-associated overall increase in apoptosis at P7 did not correlate with the abundance and distribution of CaBPs, except in CPu, in which the marked drop of CB was negatively correlated with increased apoptosis. Abundance of parvalbumin (PV) at P60 showed no significant response to VPA treatment in any of the observed regions we did not find colocalization of apoptotic (Casp3+) cells with CaBP-immunoreactive neurons. The proteomic findings suggest reduction of tyrosine hydroxylase in the crude synaptosome fraction of NAc, but not in the CPu, without simultaneous decrease of the synaptic protein, synaptophysin, indicating selective impairment of dopaminergic synapses. The morpho-functional changes found in forebrain regions of VPA-exposed mice may signify dendritic and synaptic reorganization in dopaminergic target regions, with potential translational value to similar impairments in the pathogenesis of human ASD.
Collapse
Affiliation(s)
- Cintia Klaudia Finszter
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Róbert Kemecsei
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sophie Holtkamp
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Diego Echevarría
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - István Adorján
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ágota Ádám
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Hameed RA, Ahmed EK, Mahmoud AA, Atef AA. G protein-coupled estrogen receptor (GPER) selective agonist G1 attenuates the neurobehavioral, molecular and biochemical alterations induced in a valproic acid rat model of autism. Life Sci 2023:121860. [PMID: 37331505 DOI: 10.1016/j.lfs.2023.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
AIMS Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with a rising prevalence in boys rather than girls. G protein-coupled estrogen receptor (GPER) activation by its agonist G1 showed a neuroprotective effect, similar to estradiol. The present study aimed to examine the potential of the selective GPER agonist G1 therapy on the behavioral, histopathological, biochemical, and molecular alterations induced in a valproic acid (VPA)-rat model of autism. MAIN METHODS VPA (500 mg/kg) was intraperitoneally administered to female Wistar rats (on gestational day 12.5) to induce the VPA-rat model of autism. The male offspring were intraperitoneally administered with G1 (10 and 20 μg/kg) for 21 days. After the treatment process, rats performed behavioral assessments. Then, sera and hippocampi were collected for biochemical and histopathological examinations and gene expression analysis. KEY FINDINGS GPER agonist G1 attenuated behavioral deficits, including hyperactivity, declined spatial memory and social preferences, anxiety, and repetitive behavior in VPA rats. G1 improved neurotransmission and reduced oxidative stress and histological alteration in the hippocampus. G1 reduced serum free T levels and interleukin-1β and up-regulated GPER, RORα, and aromatase gene expression levels in the hippocampus. SIGNIFICANCE The present study suggests that activation of GPER by its selective agonist G1 altered the derangements induced in a VPA-rat model of autism. G1 normalized free T levels via up-regulation of hippocampal RORα and aromatase gene expression. G1 provoked estradiol neuroprotective functions via up-regulation of hippocampal GPER expression. The G1 treatment and GPER activation provide a promising therapeutic approach to counteract the autistic-like symptoms.
Collapse
Affiliation(s)
- Rehab Abdel Hameed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Emad K Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Asmaa A Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Azza A Atef
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Zhong JG, Lan WT, Feng YQ, Li YH, Shen YY, Gong JH, Zou Z, Hou X. Associations between dysbiosis gut microbiota and changes of neurotransmitters and short-chain fatty acids in valproic acid model rats. Front Physiol 2023; 14:1077821. [PMID: 37035670 PMCID: PMC10073564 DOI: 10.3389/fphys.2023.1077821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: The microbiota-gut-brain axis plays an important role in the pathophysiology of autism spectrum disorder, but its specific mechanisms remain unclear. This study aimed to explore the associations of changes in neurotransmitters and short-chain fatty acids with alterations in gut microbiota in valproic acid model rats. Methods: The autism model rats were established by prenatal exposure to valproic acid (VPA). The Morris water maze test, open field test, and three-chamber test were conducted to assess the behaviors of rats. 16S rRNA gene sequences extracted from fecal samples were used to assess the gut microbial composition. Gas and liquid chromatography-mass spectroscopy was used to identify short-chain fatty acids in fecal samples and neurotransmitters in the prefrontal cortex (PFC). Results: The results showed that 28 bacterial taxa between valproic acid model rats and control rats were identified, and the most differential bacterial taxa in valproic acid model rats and control rats belonged to metagenomic species and Lactobacillus intestinalis. Acetic acid, butyric acid, valeric acid, isobutyric acid, and isovaleric acid were significantly decreased in the valproic acid model rats compared to those in control rats. Five neurotransmitters (threonine, kynurenine, tryptophan, 5-hydroxyindoleacetic acid, denoted as 5-HIAA, and betaine aldehyde chloride, denoted as BAC) were significantly decreased, whereas betaine was increased in the prefrontal cortex of valproic acid model rats compared to control rats. A variety of neurotransmitters (≥4) were correlated with Pseudomonas, Collisella, and Streptococcus at the genus level, and they were also related to the decrease of short-chain fatty acids. Discussion: According to this study, we can preliminarily infer that gut microbiota or their metabolic productions (such as SCFAs) may influence central neurotransmitter metabolism through related pathways of the gut-brain axis. These results provide microbial and short-chain fatty acid (SCFA) frameworks for understanding the role of the microbiota-gut-brain axis in autism spectrum disorder and shed new light on autism spectrum disorder treatment.
Collapse
Affiliation(s)
- Jiu-Gen Zhong
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Wan-Ting Lan
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Yan-Qing Feng
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Yin-Hua Li
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ying-Ying Shen
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Jia-Heng Gong
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Zhi Zou
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
- *Correspondence: Zhi Zou, ; Xiaohui Hou,
| | - Xiaohui Hou
- School of Sport and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Zhi Zou, ; Xiaohui Hou,
| |
Collapse
|
13
|
Bai Z, Li Q, Qin X, Chen J, Wang M. Acupuncture alters the intestinal microbiota in mice with valproic acid (VPA)-induced autism-like behavior. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Podgorac J, Sekulić S, Petković B, Stojadinović G, Martać L, Pešić V. The influence of continuous prenatal exposure to valproic acid on physical, nociceptive, emotional and psychomotor responses during adolescence in mice: Dose-related effects within sexes. Front Behav Neurosci 2022; 16:982811. [PMID: 36248030 PMCID: PMC9557044 DOI: 10.3389/fnbeh.2022.982811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Clinical findings show that the use of valproic acid (VPA) during pregnancy increases the risk of birth defects and autism spectrum disorder in offspring. Although there is a consensus that monitoring of potential long-term outcomes of VPA exposure is needed, especially in undiagnosed individuals, preclinical studies addressing this issue are rare. The present study examined the effects of continuous intrauterine exposure to a wide dose range of VPA (50, 100, 200, and 400 mg/kg/day) on the physical and behavioral response in peripubertal mice as a rodent model of adolescence. Body weight and the hot plate test [on postnatal days (PND) 25 and 32], the elevated plus-maze test (on PND35), and the open field test (on PND40) served to examine physical growth, the supraspinal reflex response to a painful thermal stimulus and conditional learning, anxiety-like/risk-assessment behavior, as well as novelty-induced psychomotor activity, respectively. VPA exposure produced the following responses: (i) a negative effect on body weight, except for the dose of 100 mg/kg/day in both sexes; (ii) an increase in the percentage of animals that responded to the thermal stimulus above the defined cut-off time interval and the response latency in both sexes; (iii) dose-specific changes within sexes in behavior provoked by a novel anxiogenic environment, i.e., in females less anxiety-like/risk-assessment behavior in response to the lowest exposure dose, and in males more pronounced anxiety-like/risk-assessment behavior after exposure to the highest dose and 100 mg/kg/day; (iv) dose-specific changes within sexes in novelty-induced psychomotor activity, i.e., in females a decrease in stereotypy-like activity along with an increase in rearing, and in males a decrease in stereotypy-like activity only. These findings show that continuous intrauterine exposure to VPA produces maladaptive functioning in different behavioral domains in adolescence and that the consequences are delicate to assess as they are dose-related within sexes.
Collapse
Affiliation(s)
- Jelena Podgorac
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slobodan Sekulić
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department of Neurology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Gordana Stojadinović
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Martać
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|