1
|
Fjeldstad HE, Jacobsen DP, Johnsen GM, Sugulle M, Chae A, Kanaan SB, Gammill HS, Staff AC. Fetal-origin cells in maternal circulation correlate with placental dysfunction, fetal sex, and severe hypertension during pregnancy. J Reprod Immunol 2024; 162:104206. [PMID: 38309014 DOI: 10.1016/j.jri.2024.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Fetal microchimerism (FMc) arises when fetal cells enter maternal circulation, potentially persisting for decades. Increased FMc is associated with fetal growth restriction, preeclampsia, and anti-angiogenic shift in placenta-associated proteins in diabetic and normotensive term pregnancies. The two-stage model of preeclampsia postulates that placental dysfunction causes such shift in placental growth factor (PlGF) and soluble fms-like tyrosine kinase-1 (sFLt-1), triggering maternal vascular inflammation and endothelial dysfunction. We investigated whether anti-angiogenic shift, fetal sex, fetal growth restriction, and severe maternal hypertension correlate with FMc in hypertensive disorders of pregnancy with new-onset features (n = 125). Maternal blood was drawn pre-delivery at > 25 weeks' gestation. FMc was detected by quantitative polymerase chain reaction targeting paternally inherited unique fetal alleles. PlGF and sFlt-1 were measured by immunoassay. We estimated odds ratios (ORs) by logistic regression and detection rate ratios (DRRs) by negative binomial regression. PlGF correlated negatively with FMc quantity (DRR = 0.2, p = 0.005) and female fetal sex correlated positively with FMc prevalence (OR = 5.0, p < 0.001) and quantity (DRR = 4.5, p < 0.001). Fetal growth restriction no longer correlated with increased FMc quantity after adjustment for correlates of placental dysfunction (DRR = 1.5, p = 0.272), whereas severe hypertension remained correlated with both FMc measures (OR = 5.5, p = 0.006; DRR = 6.3, p = 0.001). Our findings suggest that increased FMc is independently associated with both stages of the two-stage preeclampsia model. The association with female fetal sex has implications for microchimerism detection methodology. Future studies should target both male and female-origin FMc and focus on clarifying which placental mechanisms impact fetal cell transfer and how FMc impacts the maternal vasculature.
Collapse
Affiliation(s)
- Heidi E Fjeldstad
- Faculty of Medicine, University of Oslo, Norway; Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway.
| | - Daniel P Jacobsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Guro M Johnsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Meryam Sugulle
- Faculty of Medicine, University of Oslo, Norway; Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Angel Chae
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Obstetrics and Gynecology Research Division, University of Washington, Seattle, WA, USA
| | - Sami B Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Chimerocyte, Inc., Seattle, WA, USA
| | - Hilary S Gammill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Obstetrics and Gynecology Research Division, University of Washington, Seattle, WA, USA
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, Norway; Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|