1
|
Németh A, Bányai GL, Dobos NK, Kós T, Gaál A, Varga Z, Buzás EI, Khamari D, Dank M, Takács I, Szász AM, Garay T. Extracellular vesicles promote migration despite BRAF inhibitor treatment in malignant melanoma cells. Cell Commun Signal 2024; 22:282. [PMID: 38778340 PMCID: PMC11110207 DOI: 10.1186/s12964-024-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.
Collapse
Affiliation(s)
- Afrodité Németh
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gréta L Bányai
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Nikolett K Dobos
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Tamás Kós
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry; Biological Nanochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry; Biological Nanochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Magdolna Dank
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - A Marcell Szász
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - Tamás Garay
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Shlepova OV, Shulepko MA, Shipunova VO, Bychkov ML, Kukushkin ID, Chulina IA, Azev VN, Shramova EI, Kazakov VA, Ismailova AM, Palikova YA, Palikov VA, Kalabina EA, Shaykhutdinova EA, Slashcheva GA, Tukhovskaya EA, Dyachenko IA, Murashev AN, Deyev SM, Kirpichnikov MP, Shenkarev ZO, Lyukmanova EN. Selective targeting of α7 nicotinic acetylcholine receptor by synthetic peptide mimicking loop I of human SLURP-1 provides efficient and prolonged therapy of epidermoid carcinoma in vivo. Front Cell Dev Biol 2023; 11:1256716. [PMID: 37854069 PMCID: PMC10580074 DOI: 10.3389/fcell.2023.1256716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
α7-Type nicotinic acetylcholine receptor (α7-nAChR) promotes the growth and metastasis of solid tumors. Secreted Ly6/uPAR-Related Protein 1 (SLURP-1) is a specific negative modulator of α7-nAChR produced by epithelial cells. Here, we investigated mechanisms of antiproliferative activity of recombinant SLURP-1 in epidermoid carcinoma A431 cells and activity of SLURP-1 and synthetic 21 a.a. peptide mimicking its loop I (Oncotag) in a xenograft mice model of epidermoid carcinoma. SLURP-1 inhibited the mitogenic pathways and transcription factors in A431 cells, and its antiproliferative activity depended on α7-nAChR. Intravenous treatment of mice with SLURP-1 or Oncotag for 10 days suppressed the tumor growth and metastasis and induced sustained changes in gene and microRNA expression in the tumors. Both SLURP-1 and Oncotag demonstrated no acute toxicity. Surprisingly, Oncotag led to a longer suppression of pro-oncogenic signaling and downregulated expression of pro-oncogenic miR-221 and upregulated expression of KLF4 protein responsible for control of cell differentiation. Affinity purification revealed SLURP-1 interactions with both α7-nAChR and EGFR and selective Oncotag interaction with α7-nAChR. Thus, the selective inhibition of α7-nAChRs by drugs based on Oncotag may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- O. V. Shlepova
- NTI Center, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - M. A. Shulepko
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - V. O. Shipunova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - M. L. Bychkov
- NTI Center, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I. D. Kukushkin
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I. A. Chulina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - V. N. Azev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - E. I. Shramova
- Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V. A. Kazakov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - A. M. Ismailova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Y. A. Palikova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - V. A. Palikov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - E. A. Kalabina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - E. A. Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - G. A. Slashcheva
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - E. A. Tukhovskaya
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - I. A. Dyachenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - A. N. Murashev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - S. M. Deyev
- Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - M. P. Kirpichnikov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University Molecular Technologies of the Living Systems and Synthetic Biology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia
| | - Z. O. Shenkarev
- NTI Center, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E. N. Lyukmanova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University Molecular Technologies of the Living Systems and Synthetic Biology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia
| |
Collapse
|
3
|
Acid sensor ASIC1a induces synovial fibroblast proliferation via Wnt/β-catenin/c-Myc pathway in rheumatoid arthritis. Int Immunopharmacol 2022; 113:109328. [DOI: 10.1016/j.intimp.2022.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
4
|
Andreucci E, Ruzzolini J, Bianchini F, Versienti G, Biagioni A, Lulli M, Guasti D, Nardini P, Serratì S, Margheri F, Laurenzana A, Nediani C, Peppicelli S, Calorini L. miR-214-Enriched Extracellular Vesicles Released by Acid-Adapted Melanoma Cells Promote Inflammatory Macrophage-Dependent Tumor Trans-Endothelial Migration. Cancers (Basel) 2022; 14:cancers14205090. [PMID: 36291876 PMCID: PMC9599952 DOI: 10.3390/cancers14205090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Cutaneous melanoma is the most aggressive form of skin cancer with high-metastatic ability. Despite the recent advancements in melanoma treatments, the prognosis of metastatic patients remains very poor. A better understanding of the molecular mechanisms leading to melanoma dissemination is urgently needed in order to develop novel therapeutical strategies to ameliorate patients’ outcomes. Extracellular vesicles (EV) released by tumor cells are key players in metastasis development: by conveying bioactive molecules with oncogenic activity, they can modulate the surrounding—and even the distant—microenvironment and reprogram recipient cells to facilitate the metastatic cascade. Here, we show that melanoma cells release a higher amount of miR-214-enriched EV when adapted to extracellular acidosis, which promote a macrophage activation state, capable of facilitating the trans-endothelial migration of melanoma cells. Thus, we disclose a new molecular mechanism to prevent melanoma intravasation based on miR-214 targeting. Abstract The understanding of the molecular mechanisms leading to melanoma dissemination is urgently needed in view of the identification of new targets and the development of innovative strategies to improve patients’ outcomes. Within the complexity of tumor intercellular communications leading to metastatic dissemination, extracellular vesicles (EV) released by tumor cells are central players. Indeed, the ability to travel through the circulatory system conveying oncogenic bioactive molecules even at distant sites makes EV capable of modulating recipient cells to facilitate metastatic dissemination. The dynamic remodeling of the tumor microenvironment might influence, along with a number of other events, tumoral EV release. We observed that, in melanoma, extracellular acidosis increases the release of EV enriched in miR-214, an onco-miRNA involved in melanoma metastasis. Then, miR-214-enriched EV were found to induce a state of macrophage activation, leading to an overproduction of proinflammatory cytokines and nitric oxide. Such an inflammatory microenvironment was able to alter the endothelial cell permeability, thereby facilitating the trans-endothelial migration of melanoma cells, a crucial step in the metastatic cascade. The use of synthetic miR-214 inhibitors and miR-214 overexpression allowed us to demonstrate the key role of miR-214 in the EV-dependent induction of macrophage activation. Overall, our in vitro study reveals that the release of tumor miR-214-enriched EV, potentiated by adapting tumor cells to extracellular acidosis, drives a macrophage-dependent trans-endothelial migration of melanoma cells. This finding points to miR-214 as a potential new therapeutic target to prevent melanoma intravasation.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
- Correspondence: (E.A.); (L.C.)
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Giampaolo Versienti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Simona Serratì
- Laboratory of Nanotecnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
- Correspondence: (E.A.); (L.C.)
| |
Collapse
|
5
|
Bychkov ML, Kirichenko AV, Mikhaylova IN, Paramonov AS, Kirpichnikov MP, Shulepko MA, Lyukmanova EN. Extracellular Vesicles Derived from Metastatic Melanoma Cells Transfer α7-nAChR mRNA, Thus Increasing the Surface Expression of the Receptor and Stimulating the Growth of Normal Keratinocytes. Acta Naturae 2022; 14:95-99. [PMID: 36348718 PMCID: PMC9611855 DOI: 10.32607/actanaturae.11734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 09/08/2023] Open
Abstract
We have previously shown that extracellular vesicles secreted by metastatic melanoma cells stimulate the growth, migration, and stemness of normal keratinocytes. This study showed for the first time that extracellular vesicles secreted by the metastatic melanoma cell lines mel H, mel Kor, and mel P contain, both at the mRNA and protein levels, the α7-type nicotinic acetylcholine receptor (α7-nAChR), which is involved in the regulation of the oncogenic signaling pathways in epithelial cells. Incubation with the vesicles secreted by mel H cells and containing the highest amount of mRNA coding α7-nAChR increased the surface expression of α7-nAChR in normal Het-1A keratinocytes and stimulated their growth. Meanwhile, both of these effects disappeared in the presence of α-bungarotoxin, an α7-nAChR inhibitor. A bioinformatic analysis revealed a correlation between the increased expression of the CHRNA7 gene coding α7-nAChR in patients with metastatic melanoma and a poor survival prognosis. Therefore, extracellular vesicles derived from metastatic melanoma cells can transfer mRNA coding α7-nAChR, thus enhancing the surface expression of this receptor and stimulating the growth of normal keratinocytes. Targeting of α7-nAChR may become a new strategy for controlling the malignant transformation of keratinocytes.
Collapse
Affiliation(s)
- M. L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. V. Kirichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- Moscow Institute of Physics and Technology, State University, Dolgoprudny, Moscow region, 141701 Russia
| | - I. N. Mikhaylova
- Federal State Budgetary Institution named N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Healthcare of the Russian Federation, Russia, Moscow, 115548 Russia
| | - A. S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - M. A. Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - E. N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| |
Collapse
|
6
|
Chulpanova DS, Pukhalskaia TV, Rizvanov AA, Solovyeva VV. Contribution of Tumor-Derived Extracellular Vesicles to Malignant Transformation of Normal Cells. Bioengineering (Basel) 2022; 9:bioengineering9060245. [PMID: 35735488 PMCID: PMC9220176 DOI: 10.3390/bioengineering9060245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-cell-derived extracellular vesicles (EVs) are known to carry biologically active molecules of parental cells, which can actively modulate the tumor microenvironment. EVs produced by tumor cells play significant roles in the development and maintenance of tumor growth, metastasis, immune escape, and other important processes. However, the ability of EVs to induce the transformation of normal cells has hardly been investigated. This review discusses studies that describe the ability of tumor-cell-derived EVs to alter the metabolism and morphology of normal cells, causing changes associated with malignant transformation. Additionally, the horizontal transfer of oncogenes through EVs of tumor cells and the induction of epigenetic changes in normal cells, which leads to genomic instability and subsequent oncogenic transformation of normal cells, are also discussed.
Collapse
|