1
|
Peng SY, Chen CY, Chen H, Yang YP, Wang ML, Tsai FT, Chien CS, Weng PY, Tsai ET, Wang IC, Hsu CC, Lin TC, Hwang DK, Chen SJ, Chiou SH, Chiao CC, Chien Y. Inhibition of angiogenesis by the secretome from iPSC-derived retinal ganglion cells with Leber's hereditary optic neuropathy-like phenotypes. Biomed Pharmacother 2024; 178:117270. [PMID: 39126773 DOI: 10.1016/j.biopha.2024.117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The blood supply in the retina ensures photoreceptor function and maintains regular vision. Leber's hereditary optic neuropathy (LHON), caused by the mitochondrial DNA mutations that deteriorate complex I activity, is characterized by progressive vision loss. Although some reports indicated retinal vasculature abnormalities as one of the comorbidities in LHON, the paracrine influence of LHON-affected retinal ganglion cells (RGCs) on vascular endothelial cell physiology remains unclear. To address this, we established an in vitro model of mitochondrial complex I deficiency using induced pluripotent stem cell-derived RGCs (iPSC-RGCs) treated with a mitochondrial complex I inhibitor rotenone (Rot) to recapitulate LHON pathologies. The secretomes from Rot-treated iPSC-RGCs (Rot-iPSC-RGCs) were collected, and their treatment effect on human umbilical vein endothelial cells (HUVECs) was studied. Rot induced LHON-like characteristics in iPSC-RGCs, including decreased mitochondrial complex I activity and membrane potential, and increased mitochondrial reactive oxygen species (ROS) and apoptosis, leading to mitochondrial dysfunction. When HUVECs were exposed to conditioned media (CM) from Rot-iPSC-RGCs, the angiogenesis of HUVECs was suppressed compared to those treated with CM from control iPSC-RGCs (Ctrl-iPSC-RGCs). Angiogenesis-related proteins were altered in the secretomes from Rot-iPSC-RGC-derived CM, particularly angiopoietin, MMP-9, uPA, collagen XVIII, and VEGF were reduced. Notably, GeneMANIA analysis indicated that VEGFA emerged as the pivotal angiogenesis-related protein among the identified proteins secreted by health iPSC-RGCs but reduced in the secretomes from Rot-iPSC-RGCs. Quantitative real-time PCR and western blots confirmed the reduction of VEGFA at both transcription and translation levels, respectively. Our study reveals that Rot-iPSC-RGCs establish a microenvironment to diminish the angiogenic potential of vascular cells nearby, shedding light on the paracrine regulation of LHON-affected RGCs on retinal vasculature.
Collapse
Affiliation(s)
- Shih-Yuan Peng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Hsin Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan, ROC
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chian-Shiu Chien
- Institute of Physiology, National Yang Ming Chiao Tung University, Taiwan, ROC
| | - Pei-Yu Weng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - En-Tung Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - I-Chieh Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, ROC; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC; Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC.
| | - Chuan-Chin Chiao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC.
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC.
| |
Collapse
|
2
|
Kong K, Ding X, Wang Y, Xu S, Li G, Wang X, Zhang M, Ni Y, Xu G. Circular RNA expression profile and functional analysis of circUvrag in light-induced photoreceptor degeneration. Clin Exp Ophthalmol 2024; 52:558-575. [PMID: 38282307 DOI: 10.1111/ceo.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/18/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are implicated in retinal pathophysiology; however, their expression profiles and functions in photoreceptor apoptosis are largely unknown. We explored circRNA-expression profiles and circUvrag (host gene: Uvrag, ultraviolet radiation resistance associated gene) function in light-induced photoreceptor apoptosis. METHODS Sprague-Dawley rats and 661 W photoreceptor cells were exposed to blue light to establish light-induced photoreceptor degeneration. Differentially expressed circRNAs were identified using microarrays. Potential functions of dysregulated circRNAs were analysed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. CircUvrag expression and localization were evaluated using quantitative RT-PCR and fluorescence in situ hybridization, respectively. CircUvrag overexpression and knockdown were induced using a plasmid and a small interfering RNA, respectively, and retinal function and structure were assessed using scotopic electroretinography, haematoxylin-eosin staining, and TUNEL staining. Microglial migration was assessed using IBA1 immunostaining. The apoptosis ratio of photoreceptor cells in vitro was detected using flow cytometry. RESULTS We identified 764 differentially expressed circRNAs, which were potentially related with the development of retinal structures, including neurons, dendrites, and synapses, and might participate in nervous-system pathophysiology. Light exposure enriched circUvrag in the cytoplasm of photoreceptors in the outer nuclear layer (ONL). CircUvrag knockdown decreased photoreceptor apoptosis and microglial migration to the ONL after light exposure, preserving ONL thickness and a-wave amplitude. In vitro, circUvrag knockdown inhibited photoreceptor apoptosis, although circUvrag overexpression slightly promoted photoreceptor apoptosis. CONCLUSIONS CircUvrag knockdown attenuated light-induced photoreceptor apoptosis, and might be a potential target in retinal degeneration.
Collapse
Affiliation(s)
- Kangjie Kong
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingchao Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Sisi Xu
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xin Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingqin Ni
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Fan X, Yang Y, Wu G, Kong Y, Zhang Y, Zha X. Circ-CARD6 inhibits oxidative stress-induced apoptosis and autophagy in ARPE-19 cells via the miR-29b-3p/PRDX6/PI3K/Akt axis. Exp Eye Res 2024; 238:109690. [PMID: 37939831 DOI: 10.1016/j.exer.2023.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Oxidative stress-induced damage and dysfunction of retinal pigment epithelium (RPE) cells are important pathogenetic factors of age-related macular degeneration (AMD) and hereditary retinopathy diseases (HRDs). This study aimed to elucidate the roles and mechanisms of circ-CARD6 and miR-29b-3p in oxidative stress-induced RPE and provide new ideas for the diagnosis and treatment of retinopathy disease (RD). METHODS A model of oxidative stress-induced RPE (ARPE-19) was established, and the level of malondialdehyde (MDA) and concentration of reactive oxygen species (ROS) were detected by a DCFH-DA fluorescent probe and MDA kit. The cell viability was measured by a CCK-8 assay. The expression of PRDX6/PI3K/Akt axis genes and proteins related to apoptosis and autophagy were determined by RT‒qPCR and Western blot analyses. The dual-luciferase reporter system confirmed the targeting relationship between miR-29b-3p and circ-CARD6 and between miR-29b-3p and PRDX6. RESULTS In H2O2-treated ARPE-19 cells, the expression of circ-CARD6 and PRDX6 was decreased, while the expression of miR-29b-3p was increased. The overexpression of circ-CARD6 inhibits oxidative stress-induced increases in ROS, apoptosis and autophagy in ARPE-19 cells. circ-CARD6 targets miR-29b-3p, miR-29b-3p targets PRDX6, and circ-CARD6 regulates PRDX6 via miR-29b-3p. Further studies showed that circ-CARD6 acts as a competitive endogenous RNA of miR-29b-3p to affect the expression of PRDX6, thereby inhibiting autophagy and apoptosis in ARPE-19 cells. CONCLUSION circ-CARD6 can inhibit oxidative stress and apoptosis by regulating the miR-29b-3p/PRDX6/PI3K/Akt axis.
Collapse
Affiliation(s)
- Xinyu Fan
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yanni Yang
- Ophthalmology Department, The Second Hospital of Ningbo, Ningbo, 315010, Zhejiang, China
| | - Guojiu Wu
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yanbo Kong
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yuanping Zhang
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Xu Zha
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| |
Collapse
|
4
|
Hu JL, Hsu CC, Hsiao YJ, Lin YY, Lai WY, Liu YH, Wang CL, Ko YL, Tsai ML, Tseng HC, Chien Y, Yang YP. Leber's hereditary optic neuropathy: Update on the novel genes and therapeutic options. J Chin Med Assoc 2024; 87:12-16. [PMID: 38016117 DOI: 10.1097/jcma.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
A maternal inheritance disorder called Leber's hereditary optic neuropathy (LHON) is the most common primary mitochondrial deoxyribonucleic acid (DNA) disorder. In most studies, there are more male patients than female patients, which contradicts the usual pattern in mitochondrial hereditary diseases. This suggests that nuclear DNA (nDNA) may influence the degeneration of retinal ganglion cells (RGCs) in LHON. The primary cause of this is dysfunction in complex I of the electron transport chain, leading to ineffective adenosine triphosphate (ATP) production. In addition to MT-ND4 or MT-ND1 mutations, genes such as PRICKLE3 , YARS2 , and DNAJC30 , which come from nDNA, also play a role in LHON. These three genes affect the electron chain transport differently. PRICKLE3 interacts with ATP synthase (complex V) at Xp11.23, while YARS2 is a tyrosyl-tRNA synthetase 2 involved in mitochondria . DNAJC30 mutations result in autosomal recessive LHON (arLHON). Understanding how genes impact the disease is crucial for developing new treatments. Idebenone has been approved for treating LHON and has shown safety and efficacy in clinical trials. Mesenchymal stem cell-based therapy has also emerged as a potential treatment for LHON by transferring mitochondria into target cells. Gene therapy research focuses on specific gene mutations, and the wild-type ND4 gene target in the adeno-associated viruses (AAV) vector has shown promise in clinical trials as a potential treatment for LHON.
Collapse
Affiliation(s)
- Jui-Lin Hu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Jer Hsiao
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Long Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Huan-Chin Tseng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yueh Chien
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Recognizing the Differentiation Degree of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cells Using Machine Learning and Deep Learning-Based Approaches. Cells 2023; 12:cells12020211. [PMID: 36672144 PMCID: PMC9856279 DOI: 10.3390/cells12020211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and time-consuming laboratory work, artificial intelligence (AI)-assisted approach that can facilitate the cell classification and recognize the cell differentiation degree is of critical demand. In this study, we propose the multi-slice tensor model, a modified convolutional neural network (CNN) designed to classify iPSC-derived cells and evaluate the differentiation efficiency of iPSC-RPEs. We removed the fully connected layers and projected the features using principle component analysis (PCA), and subsequently classified iPSC-RPEs according to various differentiation degree. With the assistance of the support vector machine (SVM), this model further showed capabilities to classify iPSCs, iPSC-MSCs, iPSC-RPEs, and iPSC-RGCs with an accuracy of 97.8%. In addition, the proposed model accurately recognized the differentiation of iPSC-RPEs and showed the potential to identify the candidate cells with ideal features and simultaneously exclude cells with immature/abnormal phenotypes. This rapid screening/classification system may facilitate the translation of iPSC-based technologies into clinical uses, such as cell transplantation therapy.
Collapse
|