1
|
Alhazmi AI, El-Refaei MF, Abdallah EAA. Protective effects of gallic acid against nickel-induced kidney injury: impact of antioxidants and transcription factor on the incidence of nephrotoxicity. Ren Fail 2024; 46:2344656. [PMID: 38685608 PMCID: PMC11062283 DOI: 10.1080/0886022x.2024.2344656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Nickel (Ni) is a common metal with a nephrotoxic effect, damaging the kidneys. This study investigated the mechanism by which gallic acid (GA) protects mice kidneys against renal damage induced by Nickel oxide nanoparticles (NiO-NPs). Forty male Swiss albino mice were randomly assigned into four groups, each consisting of ten mice (n = 10/group): Group I the control group, received no treatment; Group II, the GA group, was administrated GA at a dosage of 110 mg/kg/day body weight; Group III, the NiO-NPs group, received injection of NiO-NPs at a concentration of 20 mg/kg body weight for 10 consecutive days; Group IV, the GA + NiO-NPs group, underwent treatment with both GA and NiO-NPs. The results showed a significant increase in serum biochemical markers and a reduction in antioxidant activities. Moreover, levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), phosphorylated nuclear factor kappa B (p65), and protein carbonyl (PC) were significantly elevated in group III compared with group I. Furthermore, the western blot analysis revealed significant high NF-κB p65 expression, immunohistochemistry of the NF-κB and caspase-1 expression levels were significantly increased in group III compared to group I. Additionally, the histopathological inspection of the kidney in group III exhibited a substantial increase in extensive necrosis features compared with group I. In contrast, the concomitant coadministration of GA and NiO-NPs in group IV showed significant biochemical, antioxidant activities, immunohistochemical and histopathological improvements compared with group III. Gallic acid has a protective role against kidney dysfunction and renal damage in Ni-nanoparticle toxicity.
Collapse
Affiliation(s)
| | - Mohamed F. El-Refaei
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Biochemistry and Molecular Biology, Genetic Institute, Sadat City University, Sadat City, Egypt
| | - Eman A. A. Abdallah
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
2
|
Patel S, Sathyanathan V, Salaman SD. Molecular mechanisms underlying cisplatin-induced nephrotoxicity and the potential ameliorative effects of essential oils: A comprehensive review. Tissue Cell 2024; 88:102377. [PMID: 38626527 DOI: 10.1016/j.tice.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Since the Middle Ages, essential oils (EO) have been widely used for bactericidal, virucidal, fungicidal, insecticidal, medicinal and cosmetic applications, nowadays in pharmaceutical, agricultural and food industries. Recently, EO have emerged as promising adjuvant therapies to mitigate the toxicities induced by anti - cancerous drugs; among them cisplatin induced renal damage amelioration remain remarkable. Cisplatin (cis-diaminedichloroplatinum II, CDDP) is renowned as one of the most effective anti-neoplastic agents, widely used as a broad-spectrum anti-tumor agent for various solid tumors. However, its clinical use is hampered by several side effects, notably nephrotoxicity and acute kidney injury, which arise from the accumulation of CDDP in the proximal tubular epithelial cells (PTECs). To better understand and analyze the molecular mechanisms of CDDP-induced renal damage, it is crucial to investigate potential interventions to protect against cisplatin-mediated nephrotoxicity. These EO have shown the ability to counteract oxidative stress, reduce inflammation, prevent apoptosis, and exert estrogenic effects, all contributing to renal protection. In this review, we have made an effort to summarize the molecular mechanisms and exploring new interventions by which we can pave the way for safer and more effective cancer management in the future.
Collapse
Affiliation(s)
- Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - V Sathyanathan
- Department of Pharmacognosy, Apollo College of Pharmacy, Kanchipuram, Tamil Nadu, India
| | - Samsi D Salaman
- Department of Pharmacognosy, Apollo College of Pharmacy, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
3
|
Zhang J, Gu L, Jiang Y, Ma Y, Zhang Z, Shen S, Shen S, Peng Q, Xiao W. Artesunate-Nanoliposome-TPP, a Novel Drug Delivery System That Targets the Mitochondria, Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Oxidative Stress and Inflammatory Effects. Int J Nanomedicine 2024; 19:1385-1408. [PMID: 38371457 PMCID: PMC10871145 DOI: 10.2147/ijn.s444076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Background Acute kidney injury (AKI) is a syndrome, posing a substantial healthcare burden. The pathological basis of AKI is associated with inflammation and oxidative stress which cause additional damage to mitochondria. Artesunate (ATS) is a derivative of artemisinin isolated from Artemisia annua L. that is an effective treatment for malaria and favored for the prevention and treatment of kidney diseases. However, there are still challenges related to its efficacy, including poor water solubility, limited oral bioavailability and short half-life. Liposome-based nanoparticles are used for drug delivery due to their ideal biocompatibility and their ability to improve the bioavailability of specific drugs and enhance drug efficacy. Methods In this study, a novel TPP-based natural ATS-nanoliposome, namely T-A-Ls, was applied for the treatment of AKI. ATS was encapsulated with or without triphenylphosphonium (TPP)-modified nanoliposomes. AKI was induced by cisplatin in C57BL/6J mice and a cisplatin-induced injury model was generated in HK-2 cells in vitro. Blood urea nitrogen (BUN), serum creatinine (Scr) measurements and section staining were utilized to assess renal protective effect of T-A-Ls. Inflammatory-related factors and proteins were quantified via Elisa, Immunofluorescence and Western Blot (WB). The anti-mitochondrial oxidative stress effect of T-A-Ls was determined by ROS, JC-1 and oxygen consumption rate (OCR) kits. Immunohistochemistry and WB were conducted to measure associated protein expressions. In vivo biodistribution and the concentration of T-A-Ls in kidney were also explored. Results T-A-Ls exhibited good oxidative resistance, preferential renal uptake, mitochondrial targeting, and it ameliorated kidney injury in cisplatin-induced AKI mice. Mitochondrial dysfunction, ATP production and respiratory capacity were improved in damaged HK-2 cells; ROS content decreased while mitochondrial membrane potential recovered. T-A-Ls exerted renal protection by inhibiting inflammation and reducing oxidative stress; these effects were mediated by a downregulation in the expression of RAGE and iNOS and an upregulation in both Nrf2 and HO-1. Conclusion T-A-Ls could improve the delivery of ATS to the kidney, offering a promising avenue to treat AKI.
Collapse
Affiliation(s)
- Jiaxing Zhang
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guang Dong, People’s Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guang Dong, People’s Republic of China
| | - Liwei Gu
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yumao Jiang
- Gannan Medical University, Ganzhou, Jiang Xi, People’s Republic of China
| | - Yun Ma
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guang Dong, People’s Republic of China
| | - Ziyue Zhang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Shengnan Shen
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Shuo Shen
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qing Peng
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guang Dong, People’s Republic of China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Jana S, Mitra P, Dutta A, Khatun A, Kumar Das T, Pradhan S, Kumar Nandi D, Roy S. Early diagnostic biomarkers for acute kidney injury using cisplatin-induced nephrotoxicity in rat model. Curr Res Toxicol 2023; 5:100135. [PMID: 38033659 PMCID: PMC10682538 DOI: 10.1016/j.crtox.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic kidney diseases (CKD) caused by acute kidney injury (AKI) results rapid and reversible loss in renal function. A real-time, highly accurate, and sensitive acute kidney injury biomarker is urgently required in order to keep these patients alive and prevent end stage renal disease and related complications that include hypertension, fluid and electrolyte retention, metabolic acidosis, anemia, stroke etc. This study was designed to develop a specific and sensitive model for the early identification of renal damage in male albino rats. Using a single intraperitoneal dose of cisplatin (10 mg/kg body weight) to the rats, the various duration-dependent nephrotoxic activities were compared using multiple physiological, biochemical, genomic, and histopathological markers. We looked into when renal dysfunction would start occurring after receiving a single high dose of cisplatin while blood urea nitrogen (BUN) and serum creatinine (sCr) remained normal. Following a single cisplatin injection, various measurements were taken in plasma, urine, and/or kidney tissues of rats euthanized on days 1, 2, 3, 5, and 7. When the urine kidney injury molecule (KIM-1), interleukine 18 (IL-18), nephrin, neutrophil gelatinase-associated lipocalin (NGAL) and serum cystatin C (Cys C) levels are greatly raised on day 3 after cisplatin treatment, BUN and sCr levels remain normal. Nephrotoxicity of cisplatin is also indicated by the upregulated mRNA expression of KIM-1, IL-18, Cys C, and NGAL and downregulated expression of nephrin in kidney tissue at very initial stage. Protein expression of KIM-1, IL-18 and NGAL level of kidney tissues was upregulated indicated confirmatory results done by western blot. Utilising an array of kidney impairment indicators has emerged as an earlier, more effective, and more reliable technique to diagnose AKI when compared to the most sophisticated signs now available.
Collapse
Affiliation(s)
- Sahadeb Jana
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore, Paschim Medinipur, Pin- 721129, West Bengal, India
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Palash Mitra
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Ananya Dutta
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore, Paschim Medinipur, Pin- 721129, West Bengal, India
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Amina Khatun
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore, Paschim Medinipur, Pin- 721129, West Bengal, India
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Tridip Kumar Das
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore, Paschim Medinipur, Pin- 721129, West Bengal, India
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Shrabani Pradhan
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Dilip Kumar Nandi
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Suchismita Roy
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| |
Collapse
|
5
|
Catalpol Attenuates Oxidative Stress and Inflammation via Mechanisms Involving Sirtuin-1 Activation and NF-κB Inhibition in Experimentally-Induced Chronic Kidney Disease. Nutrients 2023; 15:nu15010237. [PMID: 36615896 PMCID: PMC9824177 DOI: 10.3390/nu15010237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic kidney disease (CKD) is a stealthy disease, and its development is linked to mechanisms including inflammation and oxidative stress. Catalpol (CAT), an iridoid glucoside from the root of Rehmannia glutinosa, is reported to manifest anti-inflammatory, antioxidant, antiapoptotic and antifibrotic properties. Hence, we studied the possible nephroprotective effects of CAT and its mechanisms in an adenine-induced (0.2% w/w in feed for 4 weeks) murine model of CKD by administering 5 mg/kg CAT to BALB/c mice for the duration of 4 weeks except during weekends. Upon sacrifice, the kidney, plasma and urine were collected and various physiological, biochemical and histological endpoints were assessed. CAT significantly ameliorated the adenine-induced altered body and kidney weight, water intake, urine volume, and concentrations of urea and creatinine in plasma, as well as the creatinine clearance and the albumin and creatinine ratio. Moreover, CAT significantly ameliorated the effect of adenine-induced kidney injury by reducing the kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, cystatin C and adiponectin. Similarly, the augmented concentrations of markers of inflammation and oxidative stress in the adenine-treated group were markedly reduced with CAT pretreatment. Furthermore, CAT prevented adenine-induced deoxyribonucleic acid damage and apoptotic activity in the kidneys. Histologically, CAT significantly reduced the formation of tubular necrosis and dilation, as well as interstitial fibrosis in the kidney. In addition to that, CAT significantly decreased the adenine-induced increase in the phosphorylated NF-κB and reversed the reduced expression of sirtuin-1 in the kidney. In conclusion, CAT exhibits salutary effects against adenine-induced CKD in mice by mitigating inflammation, oxidative stress and fibrosis via mechanisms involving sirtuin-1 activation and NF-κB inhibition. Confirmatory studies are warranted in order to consider CAT as a potent nephroprotective agent against CKD.
Collapse
|
6
|
α-Bisabolol Attenuates Doxorubicin Induced Renal Toxicity by Modulating NF-κB/MAPK Signaling and Caspase-Dependent Apoptosis in Rats. Int J Mol Sci 2022; 23:ijms231810528. [PMID: 36142441 PMCID: PMC9502245 DOI: 10.3390/ijms231810528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022] Open
Abstract
Doxorubicin (DOX) is a well-known and effective antineoplastic agent of the anthracycline family. But, multiple organ toxicities compromise its invaluable therapeutic usage. Among many toxicity types, nephrotoxicity is one of the major concerns. In recent years many approaches, including bioactive agents of natural origin, have been explored to provide protective effects against chemotherapy-related complications. α-Bisabolol is a naturally occurring monocyclic sesquiterpene alcohol identified in the essential oils of various aromatic plants and possesses a wide range of pharmacological properties such as antioxidant, anti-inflammatory, analgesic, cardioprotective, antibiotic, anti-irritant, and anticancer activities. The present study aimed to evaluate the effects of α-Bisabolol on DOX-induced nephrotoxicity in Wistar male albino rats. Nephrotoxicity was induced in rats by injecting a single dose of DOX (12.5 mg/kg, i.p.), and the test compound, α-Bisabolol (25 mg/kg) was administered intraperitoneally along with DOX as a co-treatment daily for 5 days. DOX-injected rats showed reduction in body weight along with a concomitant fall in antioxidants and increased lipid peroxidation in the kidney. DOX-injection also increased levels/expressions of proinflammatory cytokines namely tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and inflammatory mediators like inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and activated nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinases (MAPK) signaling in the kidney tissues. DOX also triggered apoptotic cell death, evidenced by the increased expression of pro-apoptotic markers like BCL2-Associated X Protein (Bax), cleaved caspase-3, caspase- 9, and cytochrome-C) and a decrease in the expressions of anti-apoptotic markers namely B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-extra large (Bcl-xL) in the kidney. These biochemical alterations were additionally supported by light microscopic findings, which revealed structural alterations in the kidney. However, treatment with α-Bisabolol prevented body weight loss, restored antioxidants, mitigated lipid peroxidation, and inhibited the rise in proinflammatory cytokines, as well as favorably modulated the expressions of NF-κB/MAPK signaling and apoptosis markers in DOX-induced nephrotoxicity. Based on the results observed, it can be concluded that α-Bisabolol has potential to attenuate DOX-induced nephrotoxicity by inhibiting oxidative stress and inflammation mediated activation of NF-κB/MAPK signaling alongwith intrinsic pathway of apoptosis in rats. The study findings are suggestive of protective potential of α-Bisabolol in DOX associated nephrotoxicity and this could be potentially useful in minimizing the adverse effects of DOX and may be a potential agent or adjuvant for renal protection.
Collapse
|
7
|
Cisplatin-Induced Kidney Toxicity: Potential Roles of Major NAD +-Dependent Enzymes and Plant-Derived Natural Products. Biomolecules 2022; 12:biom12081078. [PMID: 36008971 PMCID: PMC9405866 DOI: 10.3390/biom12081078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is an FDA approved anti-cancer drug that is widely used for the treatment of a variety of solid tumors. However, the severe adverse effects of cisplatin, particularly kidney toxicity, restrict its clinical and medication applications. The major mechanisms of cisplatin-induced renal toxicity involve oxidative stress, inflammation, and renal fibrosis, which are covered in this short review. In particular, we review the underlying mechanisms of cisplatin kidney injury in the context of NAD+-dependent redox enzymes including mitochondrial complex I, NAD kinase, CD38, sirtuins, poly-ADP ribosylase polymerase, and nicotinamide nucleotide transhydrogenase (NNT) and their potential contributing roles in the amelioration of cisplatin-induced kidney injury conferred by natural products derived from plants. We also cover general procedures used to create animal models of cisplatin-induced kidney injury involving mice and rats. We highlight the fact that more studies will be needed to dissect the role of each NAD+-dependent redox enzyme and its involvement in modulating cisplatin-induced kidney injury, in conjunction with intensive research in NAD+ redox biology and the protective effects of natural products against cisplatin-induced kidney injury.
Collapse
|
8
|
Li G, Wu H, Sun L, Cheng K, Lv Z, Chen K, Qian F, Li Y. (-)-α-Bisabolol Alleviates Atopic Dermatitis by Inhibiting MAPK and NF-κB Signaling in Mast Cell. Molecules 2022; 27:molecules27133985. [PMID: 35807237 PMCID: PMC9268635 DOI: 10.3390/molecules27133985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022] Open
Abstract
(-)-α-Bisabolol (BIS) is a sesquiterpene alcohol derived mostly from Matricaria recutita L., which is a traditional herb and exhibits multiple biologic activities. BIS has been reported for treatment of skin disorders, but the effect of BIS on anti-atopic dermatitis (AD) remains unclear. Therefore, we investigated the effects of BIS on 2,4-dinitrochlorobenzene (DNCB)-induced AD in BALB/c mice and the underlying mechanism in Bone Marrow-Derived Mast Cells (BMMCs). Topical BIS treatment reduced AD-like symptoms and the release of interleukin (IL)-4 without immunoglobulin (Ig)-E production in DNCB-induced BALB/c mice. Histopathological examination revealed that BIS reduced epidermal thickness and inhibited mast cells in the AD-like lesions skin. Oral administration of BIS effectively and dose-dependently suppressed mast-cell-mediated passive cutaneous anaphylaxis. In IgE-mediated BMMCs, the levels of β-hexosaminidase (β-hex), histamine, and tumor necrosis factor (TNF)-α were reduced by blocking the activation of nuclear factor-қB (NF-қB) and c-Jun N-terminal kinase (JNK) without P38 mitogen activated protein (P38) and extracellular regulated protein kinases (Erk1/2). Taken together, our experimental results indicated BIS suppresses AD by inhibiting the activation of JNK and NF-κB in mast cells. BIS may be a promising therapeutic agent for atopic dermatitis and other mast-cell-related diseases.
Collapse
Affiliation(s)
- Guangxia Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Huayan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Liqin Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Kang Cheng
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai 200080, China; (K.C.); (Z.L.)
| | - Zhi Lv
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai 200080, China; (K.C.); (Z.L.)
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Correspondence: (F.Q.); (Y.L.)
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
- Correspondence: (F.Q.); (Y.L.)
| |
Collapse
|