1
|
Lee S, Hyun J, Shin Y, Leo Goo B. Efficacy and safety of a novel monopolar radiofrequency device with a continuous water-cooling system in patients with age-related facial volume loss. J DERMATOL TREAT 2024; 35:2333028. [PMID: 39069295 DOI: 10.1080/09546634.2024.2333028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Esthetic radiofrequency (RF) technology has much attracted public attention with the increasing demand for skin rejuvenation. A continuous water cooling-based monopolar RF (MRF) device was designed for the first time to protect the epidermis and maximize clinical outcomes. OBJECTIVE Assess the efficacy and safety of the proposed MRF device in patients with mild-to-moderate sunken cheeks and jawline laxity. METHODS Twenty-one patients underwent a single session of MRF treatment. Quantitative analysis was performed using a 3D imaging technique. Postprocedural clinical improvements were assessed with the Merz Scale. Regarding safety, adverse events (AEs), thermal sensation (TS) and pain intensity were explored. Patient satisfaction was surveyed with the Self-Assessment Questionnaire (SAQ). RESULTS The follow-up investigation demonstrated that facial volume increased across the cheek and jawline, with lifting effects throughout the treatment area. The Merz Scale assessment revealed that sunken cheeks, sagging jawlines and wrinkles were markedly improved. In addition, there were transient AEs, mild TS and moderate pain. In SAQ, 81% patients were satisfied with the procedure. CONCLUSIONS This study provided quantitative evidence for postprocedural volumetric increases along with enhanced lifting effects, strongly implying that the proposed MRF device can be an attractive option for improving facial skin volume loss and laxity.
Collapse
Affiliation(s)
- Seungwon Lee
- Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Jihyun Hyun
- Clinical Trial Center, Corederm Inc., Seoul, Korea
| | - Yeonwoo Shin
- Clinical Trial Center, Corederm Inc., Seoul, Korea
| | - Boncheol Leo Goo
- Clinical Trial Center, Corederm Inc., Seoul, Korea
- Skin Rehabilitation Center, Naeum Dermatology and Aesthetics Clinic, Seoul, Korea
| |
Collapse
|
2
|
Xiong M, Chen Y, Hu HJ, Cheng H, Li WX, Tang S, Hu X, Lan LM, Zhang H, Jiang GB. Multifunctional pH-responsive hydrogel dressings based on carboxymethyl chitosan: Synthesis, characterization fostering the wound healing. Carbohydr Polym 2024; 341:122348. [PMID: 38876718 DOI: 10.1016/j.carbpol.2024.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic abuse is increasing the present rate of drug-resistant bacterial wound infections, producing a significant healthcare burden globally. Herein, we prepared a pH-responsive CMCS/PVP/TA (CPT) multifunctional hydrogel dressing by embedding the natural plant extract TA as a nonantibiotic and cross-linking agent in carboxymethyl chitosan (CMCS) and polyvinylpyrrolidone (PVP) to prompt wound healing. The CPT hydrogel demonstrated excellent self-healing, self-adaptive, and adhesion properties to match different wound requirements. Importantly, this hydrogel showed pH sensitivity and exhibited good activity against resistant bacteria and antioxidant activity by releasing TA in case of bacterial infection (alkaline). Furthermore, the CPT hydrogel exhibited coagulant ability and could rapidly stop bleeding within 30 s. The biocompatible hydrogel effectively accelerated wound healing in a full-thickness skin defect model by thickening granulation tissue, increasing collagen deposition, vascular proliferation, and M2-type macrophage polarization. In conclusion, this study demonstrates that multifunctional CPT hydrogel offers a candidate material with potential applications for infected skin wound healing.
Collapse
Affiliation(s)
- Mingxin Xiong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yu Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Han-Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hao Cheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Xiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shipeng Tang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Min Lan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongyan Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Kim S, Kim Y, Kim C, Choi WI, Kim BS, Hong J, Lee H, Sung D. A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. DISCOVER NANO 2024; 19:119. [PMID: 39073653 PMCID: PMC11286613 DOI: 10.1186/s11671-024-04058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The present study proposes an innovative transdermal drug delivery system using ferrocene-incorporated fibers to enhance the bioavailability and therapeutic efficacy of ascorbyl tetraisopalmitate. Using electrospinning technology, the authors created ferrocene polymer fibers capable of highly efficient drug encapsulation and controlled release in response to reactive oxygen species commonly found in wound sites. The approach improves upon previous methods significantly by offering higher drug loading capacities and sustained release, directly targeting diseased cells. The results confirm the potential of ferrocene fibers for localized drug delivery, potentially reducing side effects and increasing patient convenience. The method could facilitate the application of bioactive compounds in medical textiles and targeted therapy.
Collapse
Affiliation(s)
- Sangwoo Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoon Kim
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chaehyun Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Il Choi
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Byoung Soo Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hoik Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea.
| | - Daekyung Sung
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
4
|
Gęgotek A, Jarocka-Karpowicz I, Atalay Ekiner S, Skrzydlewska E. The Anti-Inflammatory Action of Cannabigerol Accompanied by the Antioxidant Effect of 3-O-ethyl Ascorbic Acid in UVA-Irradiated Human Keratinocytes. J Pharmacol Exp Ther 2023; 387:170-179. [PMID: 37652708 DOI: 10.1124/jpet.123.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Excessive daily exposure of human skin to natural UVA radiation leads to impaired redox homeostasis in epidermal keratinocytes, resulting in changes in their proteome. Commonly used antioxidants usually exhibit protection in a narrowed range, which makes it necessary to combine their effects. Therefore, the aim of this study was to analyze the protective effect of cannabigerol (CBG) and 3-O-ethyl ascorbic acid (EAA), used separately and together, on the proteomic profile of UVA irradiated keratinocytes. Proteomic analysis with the use of the Q Exactive HF mass spectrometer, combined with biostatistic tests, performed on UVA-irradiated keratinocytes indicated enhanced and lowered expression of 186 and 160 proteins, respectively. CBG treatment after UVA irradiation reduced these numbers to 110 upregulated and 49 downregulated proteins, while EAA eliminated all these changes. CBG completely eliminated the UV-induced effect on the expression of pro-inflammatory proteins and significantly increased the level of proteins responsible for cellular locomotion. On the other hand, CBG reduced the level of UVA-induced 4-hydroxynonenal protein adducts fivefold, whereas EAA had no effect on this modification. At the same time, CBG and EAA did not modify the expression/structure of proteins in relation to the nonirradiated control keratinocytes in the case of an unaccompanied use or slightly modified the protein profile when used in a mixture. The combined protective effects of CBG on protein structure and EAA on protein expression profile allowed us to obtain a wider protection of cells against UVA radiation, compared with when the compounds were used alone. SIGNIFICANCE STATEMENT: Proteomic analysis of human skin cells allows to conclude that 3-O-ethyl ascorbic acid eliminates UVA-induced changes in the expression of keratinocyte proteins, while cannabigerol significantly reduces 4-hydroxynonenal protein adducts. The combined protective effects of cannabigerol on protein structure and of 3-O-ethyl ascorbic acid on protein expression profile allowed to obtain a wider protection of cells against UVA radiation.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland
| | | | | | | |
Collapse
|
5
|
Ghahremani-Nasab M, Del Bakhshayesh AR, Akbari-Gharalari N, Mehdipour A. Biomolecular and cellular effects in skin wound healing: the association between ascorbic acid and hypoxia-induced factor. J Biol Eng 2023; 17:62. [PMID: 37784137 PMCID: PMC10546749 DOI: 10.1186/s13036-023-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
The skin serves as a barrier to protect the body from environmental microorganisms and is the largest tissue of the body and any damage must be quickly and effectively repaired. The fundamental purpose of dermal fibroblasts is to produce and secrete extracellular matrix, which is crucial for healing wounds. The production of collagen by dermal fibroblasts requires the cofactor ascorbic acid, a free radical scavenger. In skin wounds, the presence of Ascorbic acid (AA) decreases the expression of pro-inflammatory factors and increases the expression of wound-healing factors. In addition, AA plays an important role in all three phases of wound healing, including inflammation, proliferation, and regeneration. On the other hand, growing evidence indicates that hypoxia improves the wound healing performance of mesenchymal stem cell-conditioned medium compared to the normoxic-conditioned medium. In a hypoxic-conditioned medium, the proliferation and migration of endothelial cells, fibroblasts, and keratinocytes (important cells in accelerating skin wound healing) increase. In this review, the role of AA, hypoxia, and their interactions on wound healing will be discussed and summarized by the in vitro and in vivo studies conducted to date.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Płatkowska A, Korzekwa S, Łukasik B, Zerbinati N. Combined Bipolar Radiofrequency and Non-Crosslinked Hyaluronic Acid Mesotherapy Protocol to Improve Skin Appearance and Epidermal Barrier Function: A Pilot Study. Pharmaceuticals (Basel) 2023; 16:1145. [PMID: 37631060 PMCID: PMC10459519 DOI: 10.3390/ph16081145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Age-associated changes in epidermal hydration, pigmentation, thickness and cell renewal influence skin appearance and can lead to laxity, dryness and poor skin tone. The aim of this pilot study was to assess the synergistic effects of a new bipolar radiofrequency plus non-crosslinked hyaluronic acid (HA) mesotherapy protocol compared with radiofrequency alone on skin appearance and markers of epidermal function. METHODS This prospective, single-center, split-face pilot study recruited women aged 25-65 years with dryness and laxity of the facial skin defined by a trans-epidermal water loss (TEWL) value of ≥26 g/m2/h. Subjects were treated with a bipolar radiofrequency device on both sides of the face. This was immediately followed by needle hyaluronic acid (HA) treatment on one side of the face with 2.5 mL of a non-crosslinked HA. Photographic documentation, analysis of epidermal barrier function parameters, and high frequency (HF) ultrasound analysis were performed prior to treatment and at 28 days. RESULTS Twenty female subjects with a mean age of 46 (range 29 to 54) years and dry and lax facial skin were included. TEWL was reduced and skin hydration improved to a greater extent with the combined radiofrequency plus mesotherapy protocol compared with radiofrequency alone (-5.8% vs. +3.9% and +23.1% vs. +1.0%, respectively). The combined protocol was also associated with greater improvements in melanin (-7.5% vs. -1.5%) and erythema values (-7.2% vs. +3.0%), respectively. Ultrasound measures of epidermal thickness and epidermal density were greater after the combined protocol compared with radiofrequency alone (12.0% vs. 5.6% and 57.7% vs. 7.1%, respectively). Both treatments were well-tolerated. CONCLUSIONS The combined bipolar radiofrequency and HA mesotherapy protocol provided greater improvements in skin hydration, firmness and tone compared with radiofrequency alone. The combination treatment was also associated with greater epidermal thickness and density and increased keratinocyte differentiation suggesting a synergistic effect of both treatments on epidermal homeostasis and barrier function. Both treatments were well-tolerated and led to improvements in facial appearance.
Collapse
|
7
|
Ha JW, Choi JY, Boo YC. Differential Effects of Histidine and Histidinamide versus Cysteine and Cysteinamide on Copper Ion-Induced Oxidative Stress and Cytotoxicity in HaCaT Keratinocytes. Antioxidants (Basel) 2023; 12:antiox12040801. [PMID: 37107176 PMCID: PMC10135049 DOI: 10.3390/antiox12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Metal chelators are used for various industrial and medical purposes based on their physicochemical properties and biological activities. In biological systems, copper ions bind to certain enzymes as cofactors to confer catalytic activity or bind to specific proteins for safe storage and transport. However, unbound free copper ions can catalyze the production of reactive oxygen species (ROS), causing oxidative stress and cell death. The present study aims to identify amino acids with copper chelation activities that might mitigate oxidative stress and toxicity in skin cells exposed to copper ions. A total of 20 free amino acids and 20 amidated amino acids were compared for their copper chelation activities in vitro and the cytoprotective effects in cultured HaCaT keratinocytes exposed to CuSO4. Among the free amino acids, cysteine showed the highest copper chelation activity, followed by histidine and glutamic acid. Among the amidated amino acids, cysteinamide showed the highest copper chelation activity, followed by histidinamide and aspartic acid. CuSO4 (0.4–1.0 mM) caused cell death in a concentration-dependent manner. Among the free and amidated amino acids (1.0 mM), only histidine and histidinamide prevented the HaCaT cell death induced by CuSO4 (1.0 mM). Cysteine and cysteinamide had no cytoprotective effects despite their potent copper-chelating activities. EDTA and GHK-Cu, which were used as reference compounds, had no cytoprotective effects either. Histidine and histidinamide suppressed the CuSO4-induced ROS production, glutathione oxidation, lipid peroxidation, and protein carbonylation in HaCaT cells, whereas cysteine and cysteinamide had no such effects. Bovine serum albumin (BSA) showed copper-chelating activity at 0.5–1.0 mM (34–68 mg mL−1). Histidine, histidinamide, and BSA at 0.5–1.0 mM enhanced the viability of cells exposed to CuCl2 or CuSO4 (0.5 mM or 1.0 mM) whereas cysteine and cysteinamide had no such effects. The results of this study suggest that histidine and histidinamide have more advantageous properties than cysteine and cysteinamide in terms of alleviating copper ion-induced toxic effects in the skin.
Collapse
Affiliation(s)
- Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
8
|
Babaluei M, Mottaghitalab F, Seifalian A, Farokhi M. Injectable multifunctional hydrogel based on carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C and curcumin promoted full-thickness burn regeneration. Int J Biol Macromol 2023; 236:124005. [PMID: 36907296 DOI: 10.1016/j.ijbiomac.2023.124005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Burn injuries are a major global problem, with a high risk of infection and mortality. This study aimed to develop an injectable hydrogel for wound dressings, composed of sodium carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C (CMC/PAAm/PDA VitC) for its antioxidant and antibacterial properties. Simultaneously, silk fibroin/alginate nanoparticles (SF/SANPs) loaded with curcumin (SF/SANPs CUR) were incorporated into the hydrogel to enhance wound regeneration and reduce bacterial infection. The hydrogels were fully characterized and tested in vitro and in preclinical rat models for biocompatibility, drug release, and wound healing efficacy. Results showed stable rheological properties, appropriate swelling and degradation ratios, gelation time, porosity, and free radical scavenging capacity. Biocompatibility was confirmed through MTT, lactate dehydrogenase, and apoptosis evaluations. Hydrogels containing curcumin demonstrated antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). In the preclinical study, hydrogels containing both drugs showed superior support for full-thickness burn regeneration, with improved wound closure, re-epithelialization, and collagen expression. The hydrogels also showed neovascularization and anti-inflammatory effects, as confirmed by CD31 and TNF-α markers. In conclusion, these dual drug-delivery hydrogels showed significant potential as wound dressings for full-thickness wounds.
Collapse
Affiliation(s)
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants (Basel) 2022; 11:antiox11091663. [PMID: 36139737 PMCID: PMC9495646 DOI: 10.3390/antiox11091663] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Ascorbic acid (AA) is an essential nutrient and has great potential as a cosmeceutical that protects the health and beauty of the skin. AA is expected to attenuate photoaging and the natural aging of the skin by reducing oxidative stress caused by external and internal factors and by promoting collagen gene expression and maturation. In this review, the biochemical basis of AA associated with collagen metabolism and clinical evidence of AA in increasing dermal collagen and inhibiting skin aging were discussed. In addition, we reviewed emerging strategies that have been developed to overcome the shortcomings of AA as a cosmeceutical and achieve maximum efficacy. Because extracellular matrix proteins, such as collagen, have unique amino acid compositions, their production in cells is influenced by the availability of specific amino acids. For example, glycine residues occupy 1/3 of amino acid residues in collagen protein, and the supply of glycine can be a limiting factor for collagen synthesis. Experiments showed that glycinamide was the most effective among the various amino acids and amidated amino acids in stimulating collagen production in human dermal fibroblasts. Thus, it is possible to synergistically improve collagen synthesis by combining AA analogs and amino acid analogs that act at different stages of the collagen production process. This combination therapy would be useful for skin antiaging that requires enhanced collagen production.
Collapse
|