1
|
Ahmad S, d'Avanzo N, Mancuso A, Barone A, Cristiano MC, Carresi C, Mollace V, Celia C, Fresta M, Paolino D. Skin Tolerability of Oleic Acid Based Nanovesicles Designed for the Improvement of Icariin and Naproxen Percutaneous Permeation. ACS APPLIED BIO MATERIALS 2024; 7:7852-7860. [PMID: 38608313 DOI: 10.1021/acsabm.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Deformable nanovesicles have a crucial role in topical drug delivery through the skin, due to their capability to pass intact the stratum corneum and epidermis (SCE) and significantly increase the efficacy and accumulation of payloads in the deeper layers of the skin. Namely, lipid-based ultradeformable nanovesicles are versatile and load bioactive molecules with different physicochemical properties. For this reason, this study aims to make oleic acid based nanovesicles (oleosomes) for the codelivery of icariin and sodium naproxen and increase their permeation through the skin. Oleosomes have suitable physicochemical properties and long-term stability for a potential dermal or transdermal application. The inclusion of oleic acid in the lipid bilayer increases 3-fold the deformable properties of oleosomes compared to conventional liposomes and significantly improves the percutaneous permeation of icariin and sodium naproxen through the human SCE membranes compared to hydroalcoholic solutions of both drugs. The tolerability studies on human volunteers demonstrate that oleosomes are safer and speed up the recovery of transepidermal water loss (TEWL) baselines compared to saline solution. These results highlight promising properties of icariin/sodium naproxen coloaded oleosomes for the treatment of skin disorders and suggest the potential future applications of these nanovesicles for further in vivo experiments.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Nicola d'Avanzo
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonella Barone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- UdA-TechLab, Research Center, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Xu J, Ding Z, Wang M, Wu G, Xie J. Enhanced Stable and Efficient of Dual-Ligand Zirconium-Based Metal-Organic Frameworks for Synergistic Photodynamic Inactivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406171. [PMID: 39258347 DOI: 10.1002/smll.202406171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Indexed: 09/12/2024]
Abstract
Porphyrins, known for generating toxic singlet oxygen (1O2) to combat bacteria, face challenges such as hydrophilicity and limited lifespan and 1O2 yield. Conversely, triterpenoid compounds like ammonium glycyrrhizinate (AG) offer antioxidative and antibacterial properties but lack efficacy and stability. Combining them in Metal-Organic Frameworks (MOFs) yields dual-ligand zirconium (Zr)-basedMOFs (M-TG), capitalizing on porphyrins' membrane-disrupting ability and AG's inhibition of bacterial membrane synthesis for a synergistic antibacterial effect. M-TG resolves activity loss, enhances reactive oxygen species (ROS) yield, and extends stability, achieving a remarkable 99.999% sterilization rate. This innovative approach maximizes ligand properties through synergistic effects, promising significant advancements in antibacterial material design.
Collapse
Affiliation(s)
- Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
- National Experimental Teaching Demonstration Centre for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingying Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Experimental Teaching Demonstration Centre for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
3
|
d'Avanzo N, Paolino D, Barone A, Ciriolo L, Mancuso A, Christiano MC, Tolomeo AM, Celia C, Deng X, Fresta M. OX26-cojugated gangliosilated liposomes to improve the post-ischemic therapeutic effect of CDP-choline. Drug Deliv Transl Res 2024; 14:2771-2787. [PMID: 38478324 PMCID: PMC11384645 DOI: 10.1007/s13346-024-01556-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 09/10/2024]
Abstract
Cerebrovascular impairment represents one of the main causes of death worldwide with a mortality rate of 5.5 million per year. The disability of 50% of surviving patients has high social impacts and costs in long period treatment for national healthcare systems. For these reasons, the efficacious clinical treatment of patients, with brain ischemic stroke, remains a medical need. To this aim, a liposome nanomedicine, with monosialic ganglioside type 1 (GM1), OX26 (an anti-transferrin receptor antibody), and CDP-choline (a neurotrophic drug) (CDP-choline/OX26Lip) was prepared. CDP-choline/OX26Lip were prepared by a freeze and thaw method and then extruded through polycarbonate filters, to have narrow size distributed liposomes of ~80 nm. CDP-choline/OX26Lip were stable in human serum, they had suitable pharmacokinetic properties, and 30.0 ± 4.2% of the injected drug was still present in the blood stream 12 h after its systemic injection. The post-ischemic therapeutic effect of CDP-choline/OX26Lip is higher than CDP-choline/Lip, thus showing a significantly high survival rate of the re-perfused post-ischemic rats, i.e. 96% and 78% after 8 days. The treatment with CDP-choline/OX26Lip significantly decreased the peroxidation rate of ~5-times compared to CDP-choline/Lip; and the resulting conjugated dienes, that was 13.9 ± 1.1 mmol/mg proteins for CDP-choline/Lip and 3.1 ± 0.8 for CDP-choline/OX26Lip. OX26 increased the accumulation of GM1-liposomes in the brain tissues and thus the efficacious of CDP-choline. Therefore, this nanomedicine may represent a strategy for the reassessment of CDP-choline to treat post-ischemic events caused by brain stroke, and respond to a significant clinical need.
Collapse
Affiliation(s)
- Nicola d'Avanzo
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonella Barone
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Luigi Ciriolo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Christiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128, Padua, Italy
- Perdiatric Research Institute "Città della Speranza", Corso Stati Uniti, 4, 35127, Padua, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania.
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy.
| |
Collapse
|
4
|
Mancuso A, d’Avanzo N, Cristiano MC, Paolino D. Reflectance spectroscopy: a non-invasive strategy to explore skin reactions to topical products. Front Chem 2024; 12:1422616. [PMID: 38957405 PMCID: PMC11217347 DOI: 10.3389/fchem.2024.1422616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Reflectance spectroscopy has emerged as a powerful analytical technique in the field of dermatology, offering a non-invasive strategy to assess several cutaneous properties and skin response to topical products. By analyzing reflected light across different wavelengths, reflectance spectroscopy allows the quantification of cutaneous parameters, such as erythema index and melanin content. Moreover, this analytical technique enables the monitoring of any changes in skin physiology facilitating the assessment of long-term effects of topical products as well as predicting cutaneous diseases. This review provides an overview of the application of reflectance spectroscopy in investigating skin properties and reaction to topical applied products, including both pharmaceutical and cosmetic formulations, thereby aiding in the development of personalized solutions tailored to individual needs.
Collapse
Affiliation(s)
- Antonia Mancuso
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Research Center “ProHealth Translational Hub”, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Nicola d’Avanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Research Center “ProHealth Translational Hub”, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Research Center “ProHealth Translational Hub”, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Russo C, Lombardo GE, Bruschetta G, Rapisarda A, Maugeri A, Navarra M. Bergamot Byproducts: A Sustainable Source to Counteract Inflammation. Nutrients 2024; 16:259. [PMID: 38257152 PMCID: PMC10819577 DOI: 10.3390/nu16020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic inflammation is the result of an acute inflammatory response that fails to eliminate the pathogenic agent or heal the tissue injury. The consequence of this failure lays the foundations to the onset of several chronic ailments, including skin disorders, respiratory and neurodegenerative diseases, metabolic syndrome, and, eventually, cancer. In this context, the long-term use of synthetic anti-inflammatory drugs to treat chronic illnesses cannot be tolerated by patients owing to the severe side effects. Based on this, the need for novel agents endowed with anti-inflammatory effects prompted to search potential candidates also within the plant kingdom, being recognized as a source of molecules currently employed in several therapeutical areas. Indeed, the ever-growing evidence on the anti-inflammatory properties of dietary polyphenols traced the route towards the study of flavonoid-rich sources, such as Citrus bergamia (bergamot) and its derivatives. Interestingly, the recent paradigm of the circular economy has promoted the valorization of Citrus fruit waste and, in regard to bergamot, it brought to light new evidence corroborating the anti-inflammatory potential of bergamot byproducts, thus increasing the scientific knowledge in this field. Therefore, this review aims to gather the latest literature supporting the beneficial role of both bergamot derivatives and waste products in different models of inflammatory-based diseases, thus highlighting the great potentiality of a waste re-evaluation perspective.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Viale G. Palatucci, 98168 Messina, Italy;
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, Viale G. Palatucci, 98168 Messina, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| |
Collapse
|
6
|
Paiva-Santos AC, Gonçalves T, Peixoto D, Pires P, Velsankar K, Jha NK, Chavda VP, Mohammad IS, Cefali LC, Mazzola PG, Mascarenhas-Melo F, Veiga F. Rosacea Topical Treatment and Care: From Traditional to New Drug Delivery Systems. Mol Pharm 2023; 20:3804-3828. [PMID: 37478169 PMCID: PMC10410666 DOI: 10.1021/acs.molpharmaceut.3c00324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Rosacea is a multifactorial chronic inflammatory dermatosis characterized by flushing, nontransient erythema, papules and pustules, telangiectasia, and phymatous alterations accompanied by itching, burning, or stinging, the pathophysiology of which is not yet fully understood. Conventional topical treatments usually show limited efficacy due to the physical barrier property of the skin that hinders skin penetration of the active ingredients, thereby hampering proper drug skin delivery and the respective therapeutic or cosmetic effects. New advances regarding the physiopathological understanding of the disease and the underlying mechanisms suggest the potential of new active ingredients as promising therapeutic and cosmetic approaches to this dermatosis. Additionally, the development of new drug delivery systems for skin delivery, particularly the potential of nanoparticles for the topical treatment and care of rosacea, has been described. Emphasis has been placed on their reduced nanometric size, which contributes to a significant improvement in the attainment of targeted skin drug delivery. In addition to the exposition of the known pathophysiology, epidemiology, diagnosis, and preventive measures, this Review covers the topical approaches used in the control of rosacea, including skin care, cosmetics, and topical therapies, as well as the future perspectives on these strategies.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
- LAQV,
REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy
of the University of Coimbra, University
of Coimbra, Azinhaga
Sta. Comba, 3000-548 Coimbra, Portugal
| | - Tatiana Gonçalves
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
- LAQV,
REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy
of the University of Coimbra, University
of Coimbra, Azinhaga
Sta. Comba, 3000-548 Coimbra, Portugal
| | - Patrícia
C. Pires
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
- LAQV,
REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy
of the University of Coimbra, University
of Coimbra, Azinhaga
Sta. Comba, 3000-548 Coimbra, Portugal
- Health
Sciences Research Centre (CICS-UBI), University
of Beira Interior, Av.
Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - K. Velsankar
- Department
of Physics, Sri Sivasubramaniya Nadar College
of Engineering, SSN Research Centre, Kalavakkam, Tamil Nadu 603110, India
| | - Niraj Kumar Jha
- Department
of Biotechnology, School of Engineering
and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Department
of Biotechnology, School of Applied and
Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248007, India
- School
of
Bioengineering and Biosciences, Lovely Professional
University, Phagwara, Punjab 144411, India
- Department
of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, Punjab 140413, India
| | - Vivek P. Chavda
- Department
of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380008, India
| | - Imran Shair Mohammad
- Department of Radiology, City of Hope Cancer Center, 1500 East Duarte Rd., Duarte, California 91010, USA
| | - Letícia Caramori Cefali
- Institute
of Biology, University of Campinas (UNICAMP), Campinas, São Paolo 13083-862, Brazil
- Center
for Biological and Health Sciences, Mackenzie
Presbyterian University, São
Paulo, São Paulo 01302-907, Brazil
| | - Priscila Gava Mazzola
- Faculty
of Pharmaceutical Sciences, University of
Campinas (UNICAMP), Campinas, São Paolo13083-871, Brazil
| | - Filipa Mascarenhas-Melo
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
- LAQV,
REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy
of the University of Coimbra, University
of Coimbra, Azinhaga
Sta. Comba, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
- LAQV,
REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy
of the University of Coimbra, University
of Coimbra, Azinhaga
Sta. Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Ataide JA, Coco JC, dos Santos ÉM, Beraldo-Araujo V, Silva JRA, de Castro KC, Lopes AM, Filipczak N, Yalamarty SSK, Torchilin VP, Mazzola PG. Co-Encapsulation of Drugs for Topical Application-A Review. Molecules 2023; 28:molecules28031449. [PMID: 36771111 PMCID: PMC9921006 DOI: 10.3390/molecules28031449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Achieving the best possible outcome for the therapy is the main goal of a medicine. Therefore, nanocarriers and co-delivery strategies were invented to meet this need, as they can benefit many diseases. This approach was applied specifically for cancer treatment, with some success. However, these strategies may benefit many other clinical issues. Skin is the largest and most exposed organ of the human body, with physiological and psychological properties. Due to its exposition and importance, it is not difficult to understand how many skin diseases may impact on patients' lives, representing an important burden for society. Thus, this review aims to summarize the state of the art in research concerning nanocarriers and co-delivery strategies for topical agents' applications targeting skin diseases. The challenge for the medicine of the future is to deliver the drug with spatial and temporal control. Therefore, the co-encapsulation of drugs and the appropriate form of administration for them are so important and remain as unmet needs.
Collapse
Affiliation(s)
- Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | - Érica Mendes dos Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | - Viviane Beraldo-Araujo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | | | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-373-3206; Fax: +1-617-373-8886
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| |
Collapse
|
8
|
Advances in Nanomaterials for Drug Delivery. Biomedicines 2023; 11:biomedicines11020399. [PMID: 36830935 PMCID: PMC9953327 DOI: 10.3390/biomedicines11020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, nanomedicine has provided several high-performance tools for overcoming biomedical challenges, resulting in numerous patents [...].
Collapse
|
9
|
Exploring the Synergistic Effect of Bergamot Essential Oil with Spironolactone Loaded Nano-Phytosomes for Treatment of Acne Vulgaris: In Vitro Optimization, In Silico Studies, and Clinical Evaluation. Pharmaceuticals (Basel) 2023; 16:ph16010128. [PMID: 36678625 PMCID: PMC9862695 DOI: 10.3390/ph16010128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The foremost target of the current work was to formulate and optimize a novel bergamot essential oil (BEO) loaded nano-phytosomes (NPs) and then combine it with spironolactone (SP) in order to clinically compare the efficiency of both formulations against acne vulgaris. The BEO-loaded NPs formulations were fabricated by the thin-film hydration and optimized by 32 factorial design. NPs' assessments were conducted by measuring entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). In addition, the selected BEO-NPs formulation was further combined with SP and then examined for morphology employing transmission electron microscopy and three months storage stability. Both BEO-loaded NPs selected formula and its combination with SP (BEO-NPs-SP) were investigated clinically for their effect against acne vulgaris after an appropriate in silico study. The optimum BEO-NPs-SP showed PS of 300.40 ± 22.56 nm, PDI of 0.571 ± 0.16, EE% of 87.89 ± 4.14%, and an acceptable ZP value of -29.7 ± 1.54 mV. Molecular modeling simulations showed the beneficial role of BEO constituents as supportive/connecting platforms for favored anchoring of SP on the Phosphatidylcholine (PC) interface. Clinical studies revealed significant improvement in the therapeutic response of BEO-loaded NPs that were combined with SP over BEO-NPs alone. In conclusion, the results proved the ability to utilize NPs as a successful nanovesicle for topical BEO delivery as well as the superior synergistic effect when combined with SP in combating acne vulgaris.
Collapse
|
10
|
Rahimi G, Yousefnia S, Angnes L, Negahdary M. Design a PEGylated nanocarrier containing lemongrass essential oil (LEO), a drug delivery system: Application as a cytotoxic agent against breast cancer cells. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Kapoor D, Sharma S, Verma K, Bisht A, Sharma M, Singhai NJ, Raval N, Maheshwari R. Quality-by-design-based engineered liposomal nanomedicines to treat cancer: an in-depth analysis. Nanomedicine (Lond) 2022; 17:1173-1189. [PMID: 36178357 DOI: 10.2217/nnm-2022-0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Engineered nano-sized liposomes have attained the highest success rate in commercialization among the reported nanomedicines. However, developing industrially acceptable nanoliposomes is still challenging because the process, formulation factors and even their properties may critically influence the desired attributes of the final nanoliposomal product. Implementation of quality-by-design (QbD) in nanoliposomal fabrication has led to revolutionary advancement int better analysis of the interacting factors (drug and lipid ratio, hydration, sonication, etc), which, in turn, leads to better product performance with predefined attributes (entrapment efficiency percentage, drug release time and pattern, vesicles size, polydispersity index, surface charge and surface morphology). This review provides a summary of decade of research and an in-depth analysis of QbD-based nanoliposomes developed to address different cancers. The review aims to provide complete details of QbD-inspired nanoliposomal development from process to application.
Collapse
Affiliation(s)
- Devesh Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, 394601, Gujarat, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali Niwai, 304022, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali Niwai, 304022, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali Niwai, 304022, India
| | - Mayank Sharma
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, 425405, India
| | - Nidhi Jain Singhai
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, 462033, India
| | - Nidhi Raval
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Rahul Maheshwari
- School of Pharmacy & Technology Management, SVKM's NMIMS, Jadcherla, Hyderabad, 509301, India.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|