1
|
Liu H, Wang Z, Li Y, Chen Q, Jiang S, Gao Y, Wang J, Chi Y, Liu J, Wu X, Chen Q, Xiao C, Zhong M, Chen C, Yang X. Hierarchical lncRNA regulatory network in early-onset severe preeclampsia. BMC Biol 2024; 22:159. [PMID: 39075446 PMCID: PMC11287949 DOI: 10.1186/s12915-024-01959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Recent studies have shown that several long non-coding RNAs (lncRNAs) in the placenta are associated with preeclampsia (PE). However, the extent to which lncRNAs may contribute to the pathological progression of PE is unclear. RESULTS Here, we report a hierarchical regulatory network involved in early-onset severe PE (EOSPE). We have carried out transcriptome sequencing on the placentae from patients and normal subjects to identify the differentially expressed genes (DEGs), including some lncRNAs (DElncRNAs). We then constructed a high-quality hierarchical regulatory network of lncRNAs, transcription factors (TFs), and target DEGs, containing 1851 lncRNA-TF interactions and 6901 TF-promoter interactions. The lncRNA-to-target regulatory interactions were further validated by the triplex structures between the DElncRNAs and the promoters of the target DEGs. The DElncRNAs in the regulatory network were clustered into 3 clusters, one containing DElncRNAs correlated with the blood pressure, including FLNB-AS1 with targeting 27.89% (869/3116) DEGs in EOSPE. We further demonstrated that FLNB-AS1 could bind the transcription factor JUNB to regulate a series members of the HIF-1 signaling pathway in trophoblast cells. CONCLUSIONS Our results suggest that the differential expression of lncRNAs may perturb the lncRNA-TF-DEG hierarchical regulatory network, leading to the dysregulation of many genes involved in EOSPE. Our study provides a new strategy and a valuable resource for studying the mechanism underlying gene dysregulation in EOSPE patients.
Collapse
Affiliation(s)
- Haihua Liu
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhijian Wang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanjun Li
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sijia Jiang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yue Gao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yali Chi
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Liu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoli Wu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaoqun Xiao
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chunlin Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xinping Yang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Cristodoro M, Messa M, Tossetta G, Marzioni D, Dell’Avanzo M, Inversetti A, Di Simone N. First Trimester Placental Biomarkers for Pregnancy Outcomes. Int J Mol Sci 2024; 25:6136. [PMID: 38892323 PMCID: PMC11172712 DOI: 10.3390/ijms25116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The placenta plays a key role in several adverse obstetrical outcomes, such as preeclampsia, intrauterine growth restriction and gestational diabetes mellitus. The early identification of at-risk pregnancies could significantly improve the management, therapy and prognosis of these pregnancies, especially if these at-risk pregnancies are identified in the first trimester. The aim of this review was to summarize the possible biomarkers that can be used to diagnose early placental dysfunction and, consequently, at-risk pregnancies. We divided the biomarkers into proteins and non-proteins. Among the protein biomarkers, some are already used in clinical practice, such as the sFLT1/PLGF ratio or PAPP-A; others are not yet validated, such as HTRA1, Gal-3 and CD93. In the literature, many studies analyzed the role of several protein biomarkers, but their results are contrasting. On the other hand, some non-protein biomarkers, such as miR-125b, miR-518b and miR-628-3p, seem to be linked to an increased risk of complicated pregnancy. Thus, a first trimester heterogeneous biomarkers panel containing protein and non-protein biomarkers may be more appropriate to identify and discriminate several complications that can affect pregnancies.
Collapse
Affiliation(s)
- Martina Cristodoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
| | - Martina Messa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
3
|
Costa L, Bermudez-Guzman L, Benouda I, Laissue P, Morel A, Jiménez KM, Fournier T, Stouvenel L, Méhats C, Miralles F, Vaiman D. Linking genotype to trophoblast phenotype in preeclampsia and HELLP syndrome associated with STOX1 genetic variants. iScience 2024; 27:109260. [PMID: 38439971 PMCID: PMC10910284 DOI: 10.1016/j.isci.2024.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Preeclampsia is a major hypertensive pregnancy disorder with a 50% heritability. The first identified gene involved in the disease is STOX1, a transcription factor, whose variant Y153H predisposes to the disease. Two rare mutations were also identified in Colombian women affected by the hemolysis, elevated liver enzyme, low platelet syndrome, a complication of preeclampsia (T188N and R364X). Here, we explore the effects of these variants in trophoblast cell models (BeWo) where STOX1 was previously invalidated. We firstly showed that STOX1 knockout alters response to oxidative stress, cell proliferation, and fusion capacity. Then, we showed that mutant versions of STOX1 trigger alterations in gene profiles, growth, fusion, and oxidative stress management. The results also reveal alterations of the STOX interaction with DNA when the mutations affected the DNA-binding domain of STOX1 (Y153H and T188N). We also reveal here that a major contributor of these effects appears to be the E2F3 transcription factor.
Collapse
Affiliation(s)
- Lorenzo Costa
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
- Department of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - Ikram Benouda
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Paul Laissue
- Biopas Laboratoires, Orphan Diseases Unit, BIOPAS GROUP, Bogotá 111111, Colombia
| | - Adrien Morel
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Karen Marcela Jiménez
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Thierry Fournier
- Université Paris Cité, INSERM, UMR-S1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre- & Post-natal Microbiota (3PHM), 75006 Paris, France
| | - Laurence Stouvenel
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Céline Méhats
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Francisco Miralles
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Daniel Vaiman
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| |
Collapse
|
4
|
Ghafouri-Fard S, Harsij A, Hussen BM, Abdullah SR, Baniahmad A, Taheri M, Sharifi G. A review on the role of long non-coding RNA prostate androgen-regulated transcript 1 (PART1) in the etiology of different disorders. Front Cell Dev Biol 2023; 11:1124615. [PMID: 36875771 PMCID: PMC9974648 DOI: 10.3389/fcell.2023.1124615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
LncRNA prostate androgen-regulated transcript 1 (PART1) is an important lncRNA in the carcinogenesis whose role has been firstly unraveled in prostate cancer. Expression of this lncRNA is activated by androgen in prostate cancer cells. In addition, this lncRNA has a role in the pathogenesis intervertebral disc degeneration, myocardial ischemia-reperfusion injury, osteoarthritis, osteoporosis and Parkinson's disease. Diagnostic role of PART1 has been assessed in some types of cancers. Moreover, dysregulation of PART1 expression is regarded as a prognostic factor in a variety of cancers. The current review provides a concise but comprehensive summary of the role of PART1 in different cancers and non-malignant disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Deng Y, Zhou Y, Shi J, Yang J, Huang H, Zhang M, Wang S, Ma Q, Liu Y, Li B, Yan J, Yang H. Potential genetic biomarkers predict adverse pregnancy outcome during early and mid-pregnancy in women with systemic lupus erythematosus. Front Endocrinol (Lausanne) 2022; 13:957010. [PMID: 36465614 PMCID: PMC9708709 DOI: 10.3389/fendo.2022.957010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Effectively predicting the risk of adverse pregnancy outcome (APO) in women with systemic lupus erythematosus (SLE) during early and mid-pregnancy is a challenge. This study was aimed to identify potential markers for early prediction of APO risk in women with SLE. METHODS The GSE108497 gene expression dataset containing 120 samples (36 patients, 84 controls) was downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was performed, and differentially expressed genes (DEGs) were screened to define candidate APO marker genes. Next, three individual machine learning methods, random forest, support vector machine-recursive feature elimination, and least absolute shrinkage and selection operator, were combined to identify feature genes from the APO candidate set. The predictive performance of feature genes for APO risk was assessed using area under the receiver operating characteristic curve (AUC) and calibration curves. The potential functions of these feature genes were finally analyzed by conventional gene set enrichment analysis and CIBERSORT algorithm analysis. RESULTS We identified 321 significantly up-regulated genes and 307 down-regulated genes between patients and controls, along with 181 potential functionally associated genes in the WGCNA analysis. By integrating these results, we revealed 70 APO candidate genes. Three feature genes, SEZ6, NRAD1, and LPAR4, were identified by machine learning methods. Of these, SEZ6 (AUC = 0.753) showed the highest in-sample predictive performance for APO risk in pregnant women with SLE, followed by NRAD1 (AUC = 0.694) and LPAR4 (AUC = 0.654). After performing leave-one-out cross validation, corresponding AUCs for SEZ6, NRAD1, and LPAR4 were 0.731, 0.668, and 0.626, respectively. Moreover, CIBERSORT analysis showed a positive correlation between regulatory T cell levels and SEZ6 expression (P < 0.01), along with a negative correlation between M2 macrophages levels and LPAR4 expression (P < 0.01). CONCLUSIONS Our preliminary findings suggested that SEZ6, NRAD1, and LPAR4 might represent the useful genetic biomarkers for predicting APO risk during early and mid-pregnancy in women with SLE, and enhanced our understanding of the origins of pregnancy complications in pregnant women with SLE. However, further validation was required.
Collapse
Affiliation(s)
- Yu Deng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Yiran Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiangcheng Shi
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Junting Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hong Huang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Muqiu Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Shuxian Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Qian Ma
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yingnan Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Boya Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Jie Yan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- *Correspondence: Huixia Yang,
| |
Collapse
|