1
|
Geng Y, Xie L, Wang Y, Wang Y. Unveiling the oncogenic significance of thymidylate synthase in human cancers. Am J Transl Res 2024; 16:5228-5247. [PMID: 39544745 PMCID: PMC11558401 DOI: 10.62347/iruz1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/26/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Thymidylate synthase (TYMS) constitutes a pivotal and potent target in the context of chemoresistance. However, the oncogenic role of TYMS has received insufficient attention. METHODS Leveraging data from the Cancer Genome Atlas (TCGA) and various public databases, we conducted an extensive investigation into the oncogenic role of TYMS across 33 cancer types. Subsequently, TYMS was inhibited using small interfering RNA (siRNA) in four different cell lines, and cell proliferation and migration were assessed using CellTiter-Glo and Transwell assays. RESULTS TYMS exhibited pronounced expression across a spectrum of cancers and demonstrated associations with clinical outcome in diverse cancer patient cohorts. Furthermore, genetic alterations were identified as potential influencers of overall survival in specific tumor types. Notably, the expression of thymidylate synthase correlated with tumor-infiltrating CD4+ cells in select cancers. Additionally, the functional mechanism of TYMS encompassed nucleotidase activity, chromosome segregation, and DNA replication progress. In vitro experiments further substantiated these findings, demonstrating that the suppression of TYMS impeded the cell growth and invasive capabilities of HeLa, A549, 786-O, and U87_MG cells. CONCLUSIONS This study furnishes a comprehensive understanding of the oncogenic role played by TYMS in human tumors.
Collapse
Affiliation(s)
- Yibo Geng
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Luyang Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Yan Wang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
2
|
Janakiraman H, Gao Z, Zhu Y, Dong J, Becker SA, Janneh A, Ogretmen B, Camp ER. Targeting SNAI1-Mediated Colorectal Cancer Chemoresistance and Stemness by Sphingosine Kinase 2 Inhibition. World J Oncol 2024; 15:744-757. [PMID: 39328328 PMCID: PMC11424120 DOI: 10.14740/wjon1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT), cancer stem cells (CSCs), and colorectal cancer (CRC) therapy resistance are closely associated. Prior reports have demonstrated that sphingosine-1-phosphate (S1P) supports stem cells and maintains the CSC phenotype. We hypothesized that the EMT inducer SNAI1 drives S1P signaling to amplify CSC self-renewal capacity and chemoresistance. Methods CRC cell lines with or without ectopic expression of SNAI1 were used to study the role of S1P signaling as mediators of cancer stemness and 5-fluorouracil (5FU) chemoresistance. The therapeutic ability of sphingosine kinase 2 (SPHK2) was assessed using siRNA and ABC294640, a SPHK2 inhibitor. CSCs were isolated from patient-derived xenografts (PDXs) and assessed for SPHK2 and SNAI1 expression. Results Ectopic SNAI1 expressing cell lines demonstrated elevated SPHK2 expression and increased SPHK2 promoter activity. SPHK2 inhibition with siRNA or ABC294640 ablated in vitro self-renewal and sensitized cells to 5FU. CSCs isolated from CRC PDXs express increased SPHK2 relative to the non-CSC population. Combination ABC294640/5FU therapy significantly inhibited tumor growth in mice and enhanced 5FU response in therapy-resistant CRC patient-derived tumor organoids (PDTOs). Conclusions SNAI1/SPHK2 signaling mediates cancer stemness and 5FU resistance, implicating S1P as a therapeutic target for CRC. The S1P inhibitor ABC294640 holds potential as a therapeutic agent to target CSCs in therapy refractory CRC.
Collapse
Affiliation(s)
| | - Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yun Zhu
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiangling Dong
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Scott A Becker
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA 30322, USA
| | - Alhaji Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - E Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Masuda F, Inami M, Takamura Y, Inatani M, Oki M. Identification of genes contributing to attenuation of rat model of galactose-induced cataract by pyruvate. Genes Cells 2024; 29:876-888. [PMID: 39219252 PMCID: PMC11555625 DOI: 10.1111/gtc.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Cataracts are a disease that reduces vision due to opacity formation of the lens. Diabetic cataracts occur at young age and progress relatively quickly, so the development of effective treatment has been awaited. Several studies have shown that pyruvate inhibits oxidative stress and glycation of lens proteins, which contribute to onset of diabetic cataracts. However, detailed molecular mechanisms have not been revealed. In this study, we attempted to reduce galactose-induced opacity by pyruvate with rat ex vivo model. Rat lenses were extracted and cultured in galactose-containing medium to induce lens opacity. After opacity had developed, continued culturing with pyruvate in the medium resulted in a reduction of lens opacity. Subsequently, we conducted microarray analysis to investigate the genes that contribute to the therapeutic effect. We performed quantitative expression measurements using RT-qPCR for extracted genes that were upregulated in cataract-induced lenses and downregulated in pyruvate-treated lenses, resulting in the identification of 34 candidate genes. Functional analysis using the STRING database suggests that metallothionein-related factors (Mt1a, Mt1m, and Mt2A) and epithelial-mesenchymal transition-related factors (Acta2, Anxa1, Cd81, Mki67, Timp1, and Tyms) contribute to the therapeutic effect of cataracts.
Collapse
Affiliation(s)
- Fuuga Masuda
- Department of Applied Chemistry and Biotechnology, Graduate School of EngineeringUniversity of FukuiFukuiJapan
| | - Mayumi Inami
- Technical Division, School of EngineeringUniversity of FukuiFukuiJapan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of EngineeringUniversity of FukuiFukuiJapan
- Life Science Innovation CenterUniversity of FukuiFukuiJapan
| |
Collapse
|
4
|
Ciszewski WM, Woźniak LA, Sobierajska K. Diverse roles of SARS-CoV-2 Spike and Nucleocapsid proteins in EndMT stimulation through the TGF-β-MRTF axis inhibited by aspirin. Cell Commun Signal 2024; 22:296. [PMID: 38807115 PMCID: PMC11134719 DOI: 10.1186/s12964-024-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The SARS-CoV-2 virus causes severe COVID-19 in one-fifth of patients. In addition to high mortality, infection may induce respiratory failure and cardiovascular complications associated with inflammation. Acute or prolonged inflammation results in organ fibrosis, the cause of which might be endothelial disorders arising during the endothelial-mesenchymal transition (EndMT). METHODS HUVECs and HMEC-1 cells were stimulated with SARS-CoV-2 S (Spike) and N (Nucleocapsid) proteins, and EndMT induction was evaluated by studying specific protein markers via Western blotting. Wound healing and tube formation assays were employed to assess the potential of SARS-CoV-2 to stimulate changes in cell behaviour. MRTF nuclear translocation, ROS generation, TLR4 inhibitors, TGF-β-neutralizing antibodies, and inhibitors of the TGF-β-dependent pathway were used to investigate the role of the TGF-β-MRTF signalling axis in SARS-CoV-2-dependent EndMT stimulation. RESULTS Both viral proteins stimulate myofibroblast trans-differentiation. However, the N protein is more effective at EndMT induction. The TGF-β-MRTF pathway plays a critical role in this process. The N protein preferentially favours action through TGF-β2, whose secretion is induced through TLR4-ROS action. TGF-β2 stimulates MRTF-A and MRTF-B nuclear translocation and strongly regulates EndMT. In contrast, the Spike protein stimulates TGF-β1 secretion as a result of ACE2 downregulation. TGF-β1 induces only MRTF-B, which, in turn, weakly regulates EndMT. Furthermore, aspirin, a common nonsteroidal anti-inflammatory drug, might prevent and reverse SARS-CoV-2-dependent EndMT induction through TGF-β-MRTF pathway deregulation. CONCLUSION The reported study revealed that SARS-CoV-2 infection induces EndMT. Moreover, it was demonstrated for the first time at the molecular level that the intensity of the EndMT triggered by SARS-CoV-2 infection may vary and depend on the viral protein involved. The N protein acts through TLR4-ROS-TGF-β2-MRTF-A/B, whereas the S protein acts through ACE2-TGF-β1-MRTF-B. Furthermore, we identified aspirin as a potential anti-fibrotic drug for treating patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka Str. 6/8, Lodz, 92- 215, Poland
| | - Lucyna A Woźniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego Str. 7/9, Lodz, 90-752, Poland
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka Str. 6/8, Lodz, 92- 215, Poland.
| |
Collapse
|
5
|
Wei JB, Zeng XC, Ji KR, Zhang LY, Chen XM. Identification of Key Genes and Related Drugs of Adrenocortical Carcinoma by Integrated Bioinformatics Analysis. Horm Metab Res 2023. [PMID: 38109896 DOI: 10.1055/a-2209-0771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Adrenocortical carcinoma (ACC) is a malignant carcinoma with an extremely poor prognosis, and its pathogenesis remains to be understood to date, necessitating further investigation. This study aims to discover biomarkers and potential therapeutic agents for ACC through bioinformatics, enhancing clinical diagnosis and treatment strategies. Differentially expressed genes (DEGs) between ACC and normal adrenal cortex were screened out from the GSE19750 and GSE90713 datasets available in the GEO database. An online Venn diagram tool was utilized to identify the common DEGs between the two datasets. The identified DEGs were subjected to functional assessment, pathway enrichment, and identification of hub genes by performing the protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The differences in the expressions of hub genes between ACC and normal adrenal cortex were validated at the GEPIA2 website, and the association of these genes with the overall patient survival was also assessed. Finally, on the QuartataWeb website, drugs related to the identified hub genes were determined. A total of 114 DEGs, 10 hub genes, and 69 known drugs that could interact with these genes were identified. The GO and KEGG analyses revealed a close association of the identified DEGs with cellular signal transduction. The 10 hub genes identified were overexpressed in ACC, in addition to being significantly associated with adverse prognosis in ACC. Three genes and the associated known drugs were identified as potential targets for ACC treatment.
Collapse
Affiliation(s)
- Jian-Bin Wei
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiao-Chun Zeng
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kui-Rong Ji
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Ling-Yi Zhang
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Xiao-Min Chen
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Chmielewska-Kassassir M, Sobierajska K, Ciszewski WM, Kryczka J, Zieleniak A, Wozniak LA. Evening Primrose Extract Modulates TYMS Expression via SP1 Transcription Factor in Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:5003. [PMID: 37894370 PMCID: PMC10605291 DOI: 10.3390/cancers15205003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE To determine the mechanism of EPE in downregulating TYMS in MPM cancer. METHODS The TYMS mRNA expression with epithelial-to-mesenchymal transition biomarkers and nuclear factor SP1 was assessed using the GEO database in a data set of MPM patients (GSE51024). Invasive MPM cell lines were in vitro models for the investigation of TYMS expression after EPE treatment. The tyms promoter SP1 binding sequences were determined using Genomatix v 3.4 software Electrophoretic mobility shift and dual-luciferase reporter assays revealed specific SP1 motifs in the interaction of EPE and reference compounds. Chromatin immunoprecipitation and Re-ChIP were used for the co-occupancy study. RESULTS In MPM patients, a positive correlation of overexpressed TYMS with mesenchymal TWIST1, FN1 and N-cadherin was observed. EPE and its major components, gallic and ellagic acid (GA and EA, respectively), downregulated TYMS in invasive MPM cells by interacting with particular SP1 motifs on the tyms promoter. The luciferase constructs confirmed the occupation of two SP1 regulatory regions critical for the promotion of TYMS expression. Both EPE and reference standards influenced SP1 translocation into the nucleus. CONCLUSION EPE components reduced TYMS expression by occupation of SP1 motifs on the tyms promoter and reversed the EMT phenotype of invasive MPM cells. Further in-depth analysis of the molecular docking of polyphenol compounds with SP1 regulatory motifs is required.
Collapse
Affiliation(s)
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Wojciech M. Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland;
| | - Andrzej Zieleniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| | - Lucyna A. Wozniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| |
Collapse
|
7
|
Ciszewski WM, Wozniak LA, Sobierajska K. SARS-CoV-2 S and N protein peptides drive invasion abilities of colon cancer cells through TGF-β1 regulation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119541. [PMID: 37468071 DOI: 10.1016/j.bbamcr.2023.119541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
The COVID-19 pandemic led to the delay of colorectal cancer (CRC) diagnosis, which causes CRC to be treated at more advanced, often metastatic stages. Unfortunately, there is no effective treatment for metastatic CRC stages, which are considered the leading cause of patients' death. The mortality induced by SARS-CoV-2 is significantly higher in cancer patients than in patients with other diseases. Interestingly, COVID-19 patients often develop fibrosis which depends on epithelial-mesenchymal transition (EMT) - the process also involved in cancer progression. The study aimed to verify whether SARS-CoV-2 induces EMT and consequently increases the invasion potential of colon cancer cells. CRC cells were stimulated with SARS-CoV-2 S and N protein peptides and epithelial and mesenchymal markers were analysed with Western blotting to detect the occurrence of the EMT. The migration, invasion assays and MMP-7 secretion were employed to evaluate the potential of SARS-CoV-2 to stimulate the cells invasion in vitro. ELISA assay, TGF-β1 neutralizing antibodies, TGF-βR silencing and inhibitors were used to investigate the role of the TGF-β1 signalling pathways in the SARS-CoV-2-dependent CRC stimulation. The SARS-CoV-2 induced EMT, which increased the invasion ability of CRC cells. Moreover, the SARS-CoV-2 proteins drive colon cancer cell invasion through TGF-β1. Additionally, secreted TGF-β1 induced a bystander effect in colon cancer cells. However, blocking TGF-β1/Smad- and -non-Smad-dependent pathways suppressed the SARS-CoV-2-induced invasiveness of CRC. In conclusion, we revealed that SARS-CoV-2 stimulates the invasion abilities of CRC by regulating TGF-β1-induced EMT. Our results provide a theoretical basis for using anti-TGF-β1 therapy to reduce the risk of CRC metastasis during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Lucyna A Wozniak
- Department of Structural Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
8
|
Nadhan R, Kashyap S, Ha JH, Jayaraman M, Song YS, Isidoro C, Dhanasekaran DN. Targeting Oncometabolites in Peritoneal Cancers: Preclinical Insights and Therapeutic Strategies. Metabolites 2023; 13:618. [PMID: 37233659 PMCID: PMC10222714 DOI: 10.3390/metabo13050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Peritoneal cancers present significant clinical challenges with poor prognosis. Understanding the role of cancer cell metabolism and cancer-promoting metabolites in peritoneal cancers can provide new insights into the mechanisms that drive tumor progression and can identify novel therapeutic targets and biomarkers for early detection, prognosis, and treatment response. Cancer cells dynamically reprogram their metabolism to facilitate tumor growth and overcome metabolic stress, with cancer-promoting metabolites such as kynurenines, lactate, and sphingosine-1-phosphate promoting cell proliferation, angiogenesis, and immune evasion. Targeting cancer-promoting metabolites could also lead to the development of effective combinatorial and adjuvant therapies involving metabolic inhibitors for the treatment of peritoneal cancers. With the observed metabolomic heterogeneity in cancer patients, defining peritoneal cancer metabolome and cancer-promoting metabolites holds great promise for improving outcomes for patients with peritoneal tumors and advancing the field of precision cancer medicine. This review provides an overview of the metabolic signatures of peritoneal cancer cells, explores the role of cancer-promoting metabolites as potential therapeutic targets, and discusses the implications for advancing precision cancer medicine in peritoneal cancers.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
| | - Srishti Kashyap
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
| | - Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Cura Y, Pérez-Ramírez C, Sánchez-Martín A, Membrive-Jimenez C, Valverde-Merino MI, González-Flores E, Morales AJ. Influence of Single-Nucleotide Polymorphisms on Clinical Outcomes of Capecitabine-Based Chemotherapy in Colorectal Cancer Patients: A Systematic Review. Cancers (Basel) 2023; 15:cancers15061821. [PMID: 36980706 PMCID: PMC10046456 DOI: 10.3390/cancers15061821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The aim of this systematic review was to provide a comprehensive overview of the literature published in the last decade on the association of single-nucleotide polymorphisms in genes involved in the pharmacodynamic and pharmacokinetic pathways of capecitabine with treatment outcomes among colorectal cancer patients. A systematic search of the literature published in the last 10 years was carried out in two databases (Medline and Scopus) using keywords related to the objective. Quality assessment of the studies included was performed using an assessment tool derived from the Strengthening the Reporting of Genetic Association (STREGA) statement. Thirteen studies were included in this systematic review. Genes involved in bioactivation, metabolism, transport, mechanism of action of capecitabine, DNA repair, and folate cycle were associated with toxicity. Meanwhile, genes related to DNA repair were associated with therapy effectiveness. This systematic review reveals that several SNPs other than the four DPYD variants that are screened in clinical practice could have an impact on treatment outcomes. These findings suggest the identification of future predictive biomarkers of effectiveness and toxicity in colorectal cancer patients treated with capecitabine. However, the evidence is sparse and requires further validation.
Collapse
Affiliation(s)
- Yasmin Cura
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain
| | - Cristina Pérez-Ramírez
- Department of Biochemistry and Molecular Biology II, José Mataix Institute of Nutrition and Food Technology, Center for Biomedical Research, Universidad de Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain
- Correspondence:
| | - Almudena Sánchez-Martín
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain
| | - Cristina Membrive-Jimenez
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain
| | - María Isabel Valverde-Merino
- Pharmaceutical Care Research Group, Facultad de Farmacia, Universidad de Granada, Campus de la Cartuja, 18071 Granada, Spain
| | - Encarnación González-Flores
- Medical Oncology, Hospital Universitario Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain
- Biosanitary Research Institute of Granada, Ibs.Granada, Avda. de Madrid, 15, 18012 Granada, Spain
| | - Alberto Jiménez Morales
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain
| |
Collapse
|
10
|
Circulating miRNA Expression Profiles and Machine Learning Models in Association with Response to Irinotecan-Based Treatment in Metastatic Colorectal Cancer. Int J Mol Sci 2022; 24:ijms24010046. [PMID: 36613487 PMCID: PMC9820223 DOI: 10.3390/ijms24010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer represents a leading cause of cancer-related morbidity and mortality. Despite improvements, chemotherapy remains the backbone of colorectal cancer treatment. The aim of this study is to investigate the variation of circulating microRNA expression profiles and the response to irinotecan-based treatment in metastatic colorectal cancer and to identify relevant target genes and molecular functions. Serum samples from 95 metastatic colorectal cancer patients were analyzed. The microRNA expression was tested with a NucleoSpin miRNA kit (Machnery-Nagel, Germany), and a machine learning approach was subsequently applied for microRNA profiling. The top 10 upregulated microRNAs in the non-responders group were hsa-miR-181b-5p, hsa-miR-10b-5p, hsa-let-7f-5p, hsa-miR-181a-5p, hsa-miR-181d-5p, hsa-miR-301a-3p, hsa-miR-92a-3p, hsa-miR-155-5p, hsa-miR-30c-5p, and hsa-let-7i-5p. Similarly, the top 10 downregulated microRNAs were hsa-let-7d-5p, hsa-let-7c-5p, hsa-miR-215-5p, hsa-miR-143-3p, hsa-let-7a-5p, hsa-miR-10a-5p, hsa-miR-142-5p, hsa-miR-148a-3p, hsa-miR-122-5p, and hsa-miR-17-5p. The upregulation of microRNAs in the miR-181 family and the downregulation of those in the let-7 family appear to be mostly involved with non-responsiveness to irinotecan-based treatment.
Collapse
|
11
|
Luo C, Xie Y, He M, Xia Y, Li Y, He L, Li J, Wang L, Han X, Zhang L, Yuan X, Wang Z, Liu Y, Tan W. Artificial Nucleobase-Directed Programmable Synthesis and Assembly of Amphiphilic Nucleic Acids as an All-in-One Platform for Cation-Free siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44019-44028. [PMID: 36149091 DOI: 10.1021/acsami.2c09406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient transport of nucleic acid therapeutics into targeted cells is the key step of genetic modulation in disease treatment. Nowadays, delivery systems strongly rely on cationic materials, but how to balance the trade-off between effectiveness and toxicity of these exogenous materials remains incredibly challenging. Here, we take inspiration from nucleic acid chemistry and introduce a new concept of amphiphilic nucleic acids (ANAs), as an all-in-one platform for cation-free nucleic acid delivery, by programmatically conjugating two different artifical nucleobases with sequence-independent activities. Specifically, the hydrophilic artificial nucleobases in ANAs act as both delivery vectors and therapeutic cargos for integrated benefits, while the hydrophobic nucleobases enable molecular self-assembly for improved stability and endosomal membrane oxidation for enhanced endosomal escape. By virtue of these merits, this platform is successfully used for short interference RNA (siRNA) delivery, which demonstrates a high siRNA loading capacity, rapid cellular uptake, and efficient endosomal escape, eliciting remarkable gene silencing and synergistic inhibitory effects on cancer cell proliferation and migration. This work is a case study in exploiting the basis of nucleic acid chemistry to afford new paradigms for advanced cancer theranostics.
Collapse
Affiliation(s)
- Can Luo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Yazhou Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Lei He
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Xiaoyan Han
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Zhiqiang Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai JiaoTong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Ciszewski WM, Włodarczyk J, Chmielewska-Kassassir M, Fichna J, Wozniak LA, Sobierajska K. Evening primrose seed extract rich in polyphenols modulates the invasiveness of colon cancer cells by regulating the TYMS expression. Food Funct 2022; 13:10994-11007. [DOI: 10.1039/d2fo01737g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural polyphenols are plant metabolites exhibiting a broad range of biological activities.
Collapse
Affiliation(s)
- Wojciech M. Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Lucyna A. Wozniak
- Department of Structural Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|