1
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
2
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
3
|
Keshavarz M, Jahanshahi M, Hasany M, Kadumudi FB, Mehrali M, Shahbazi MA, Alizadeh P, Orive G, Dolatshahi-Pirouz A. Smart alginate inks for tissue engineering applications. Mater Today Bio 2023; 23:100829. [PMID: 37841801 PMCID: PMC10568307 DOI: 10.1016/j.mtbio.2023.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Amazing achievements have been made in the field of tissue engineering during the past decades. However, we have not yet seen fully functional human heart, liver, brain, or kidney tissue emerge from the clinics. The promise of tissue engineering is thus still not fully unleashed. This is mainly related to the challenges associated with producing tissue constructs with similar complexity as native tissue. Bioprinting is an innovative technology that has been used to obliterate these obstacles. Nevertheless, natural organs are highly dynamic and can change shape over time; this is part of their functional repertoire inside the body. 3D-bioprinted tissue constructs should likewise adapt to their surrounding environment and not remain static. For this reason, the new trend in the field is 4D bioprinting - a new method that delivers printed constructs that can evolve their shape and function over time. A key lack of methodology for printing approaches is the scalability, easy-to-print, and intelligent inks. Alginate plays a vital role in driving innovative progress in 3D and 4D bioprinting due to its exceptional properties, scalability, and versatility. Alginate's ability to support 3D and 4D printing methods positions it as a key material for fueling advancements in bioprinting across various applications, from tissue engineering to regenerative medicine and beyond. Here, we review the current progress in designing scalable alginate (Alg) bioinks for 3D and 4D bioprinting in a "dry"/air state. Our focus is primarily on tissue engineering, however, these next-generation materials could be used in the emerging fields of soft robotics, bioelectronics, and cyborganics.
Collapse
Affiliation(s)
- Mozhgan Keshavarz
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Mohammadjavad Jahanshahi
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 8767161167, Jiroft, Iran
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Parvin Alizadeh
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz 01006, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
| | | |
Collapse
|
4
|
Windisch J, Reinhardt O, Duin S, Schütz K, Rodriguez NJN, Liu S, Lode A, Gelinsky M. Bioinks for Space Missions: The Influence of Long-Term Storage of Alginate-Methylcellulose-Based Bioinks on Printability as well as Cell Viability and Function. Adv Healthc Mater 2023; 12:e2300436. [PMID: 37125819 PMCID: PMC11468998 DOI: 10.1002/adhm.202300436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Indexed: 05/02/2023]
Abstract
Bioprinting is considered a key technology for future space missions and is currently being established on the International Space Station (ISS). With the aim to perform bioink production as a critical and resource-consuming preparatory step already on Earth and transport a bioink cartridge "ready to use" to the ISS, the storability of bioinks is investigated. Hydrogel blends based on alginate and methylcellulose are laden with either green microalgae of the species Chlorella vulgaris or with different human cell lines including immortilized human mesenchymal stem cells, SaOS-2 and HepG2, as well as with primary human dental pulp stem cells. The bioinks are filled into printing cartridges and stored at 4°C for up to four weeks. Printability of the bioinks is maintained after storage. Viability and function of the cells embedded in constructs bioprinted from the stored bioinks are investigated during subsequent cultivation: The microalgae survive the storage period very well and show no loss of growth and functionality, however a significant decrease is visible for human cells, varying between the different cell types. The study demonstrates that storage of bioinks is in principle possible and is a promising starting point for future research, making complex printing processes more effective and reproducible.
Collapse
Affiliation(s)
- Johannes Windisch
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Olena Reinhardt
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Sarah Duin
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Nuria Juliana Novoa Rodriguez
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| |
Collapse
|