1
|
Wang Y, Kong J, Yang Y, Zheng Y, Li J. Drug-induced dementia: a pharmacovigilance analysis of the FAERS database. Expert Opin Drug Saf 2024:1-8. [PMID: 39673546 DOI: 10.1080/14740338.2024.2443106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Dementia is a global public health challenge. Certain medications, such as anticholinergics and benzodiazepines, have been linked to an increased dementia risk. However, most studies focused on a limited range of drugs, lacking a comprehensive overview. This article addressed this gap by analyzing drugs associated with dementia using data from the FDA Adverse Event Reporting System (FAERS). RESEARCH DESIGN AND METHODS The FAERS database was queried using Open Vigil 2.1 to extract reports of drug-induced dementia events from January 2004 to September 2023. Signal detection was performed using Reporting Odds Ratio (ROR) and Proportional Reporting Ratio methods. RESULTS We analyzed 21,509 reports. There were 163 drugs positively associated with dementia, including neurological drugs (51 drugs, 31.3%), cardiovascular drugs (25 drugs, 15.3%), alimentary tract/metabolism drugs (24 drugs, 14.7%) and genito urinary system/sex hormones drugs (15 drugs, 9.2%). Besides neurological drugs, the drugs with the highest number of reports were apixaban, valsartan and atorvastatin. CONCLUSION We found that tamsulosin, alfuzosin, and megestrol may be associated with an increased risk of dementia, and further research is required to clarify these relationships. In clinical practice, it is important to monitor the cognitive status of patients when using drugs that may increase the risk of dementia.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahe Kong
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi Yang
- Department of Pharmacy, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yifan Zheng
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Clinical Pharmacy Translational Science, University of Michigan College of Pharmacy, Ann Arbor, USA
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Su Y, Liu N, Wang P, Shang C, Sun R, Ma J, Li Z, Ma H, Sun Y, Zhang Z, Song J, Xie Z, Xu J, Zhang Z. Proteomic analysis and experimental validation reveal the blood-brain barrier protective of Huanshaodan in the treatment of SAMP8 mouse model of Alzheimer's disease. Chin Med 2024; 19:137. [PMID: 39369234 PMCID: PMC11456246 DOI: 10.1186/s13020-024-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Huanshaodan (HSD) is a Chinese Herbal Compound which has a definite clinical effect on Alzheimer's disease (AD), however, the underlying mechanism remains unclear. The aim of this study is to preliminarily reveal the mechanism of HSD in the treatment of AD model of SAMP8 mice. METHODS Chemical composition of HSD and its drug-containing serum were identified by Q-Orbitrap high resolution liquid mass spectrometry. Six-month-old SAMP8 mice were treated with HSD and Donepezil hydrochloride by gavage for 2 months, and Wogonin for 28 days. Behavioral test was performed to test the learning and memory ability of mice. Immunofluorescence (IF) or Western-blot methods were used to detect the levels of pSer404-tau and β-amyloid (Aβ) in the brain of mice. Hematoxylin-eosin (H&E) staining and Transmission electron microscopy (TEM) assay was applied to observe the pathological changes of neurons. Proteomic technology was carried out to analyze and identify the protein network of HSD interventions in AD. Then the pathological process of the revealed AD-related differential proteins was investigated by IF, Q-PCR, Western-blot, Fluorescence in situ hybridization (FISH) and 16S rRNA sequencing methods. RESULTS The results showed that HSD and Wogonin, one of the components in its drug-containing serum, can effectively improve the cognitive impairments of SAMP8 mice, protect hippocampal neurons and synapses, and reduce the expression of pSer404-tau and Aβ. HSD and Wogonin reduced the levels of fibrinogen β chain (FGB) and γ chain (FGG), the potential therapeutic targets revealed by proteomics analysis, reduced the colocalization of FGB and FGG with Aβ, ionized calcium binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), increased level of and myelin basic protein (MBP). Meanwhile, HSD and Wogonin increased ZO-1 and Occludin levels, improved brain microvascular injury, and reduced levels of bacteria/bacterial DNA and lipopolysaccharide (LPS) in the brain of mice. In addition, 16S rRNA sequencing indicated that HSD regulated the structure of intestinal microbiota of mice. CONCLUSION The effects of HSD on AD may be achieved by inhibiting the levels of fibrinogen and the interactions on glia cells in the brain, and by modulating the structure of intestinal microbiota and improving the blood-brain barrier function.
Collapse
Affiliation(s)
- Yunfang Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou, 450046, China
| | - Ningning Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Pan Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Congcong Shang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Ruiqin Sun
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Jinlian Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Zhonghua Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Huifen Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Yiran Sun
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Zijuan Zhang
- School of Basic Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Junying Song
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China.
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China.
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Deryusheva EI, Shevelyova MP, Rastrygina VA, Nemashkalova EL, Vologzhannikova AA, Machulin AV, Nazipova AA, Permyakova ME, Permyakov SE, Litus EA. In Search for Low-Molecular-Weight Ligands of Human Serum Albumin That Affect Its Affinity for Monomeric Amyloid β Peptide. Int J Mol Sci 2024; 25:4975. [PMID: 38732194 PMCID: PMC11084196 DOI: 10.3390/ijms25094975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
An imbalance between production and excretion of amyloid β peptide (Aβ) in the brain tissues of Alzheimer's disease (AD) patients leads to Aβ accumulation and the formation of noxious Aβ oligomers/plaques. A promising approach to AD prevention is the reduction of free Aβ levels by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aβ. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aβ. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aβ40 interaction: prednisone favors HSA-Aβ interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.
Collapse
Affiliation(s)
- Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Alisa A. Vologzhannikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pr. Nauki, 5, Pushchino 142290, Moscow Region, Russia;
| | - Alija A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| |
Collapse
|
4
|
Lee H, Yang MY, Raskatov JA, Kim H, Goddard WA. Molecular Dynamics Studies of Atomistically Determined Fibrillar Assemblies: Comparison of the Rippled β-Sheet, Pleated β-Sheet, and Herringbone Structures. J Phys Chem Lett 2024; 15:4568-4574. [PMID: 38639377 DOI: 10.1021/acs.jpclett.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Pauling and Corey expected that a racemic mixture would result in a rippled β-sheet, however, it has been known from experiments that the racemic mixtures of triphenylalanine lead to a herringbone structure. Because of the theoretical limitations concerning crystal structures such as rippled β-sheet, it is inevitable to understand how the interplay of the amino acids prefers a specific structural motif. In this paper we use molecular dynamics to understand the sequence- and enantiomer-dependent structures by comparisons between rippled β-sheet and pleated β-sheet, solvated and anhydrous rippled β-sheet, and rippled β-sheet and the herringbone structure, based on thermodynamics and structures at the atomic level. The tripeptides select the favored structure that can be stabilized through aromatic or hydrogen bonding interactions between tripeptides. Furthermore, the solubility is determined by the environment of space that is created around the side chains. Our findings provide comprehensive insight into the crystallized fibril motif of the polypeptide.
Collapse
Affiliation(s)
- Hyeonju Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jevgenij A Raskatov
- UC Santa Cruz Department of Chemistry and Biochemistry, UCSC, 1156 High Street, Santa Cruz, California 95064, United States
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Yubolphan R, Pratchayasakul W, Koonrungsesomboon N, Chattipakorn N, Chattipakorn SC. Potential links between platelets and amyloid-β in the pathogenesis of Alzheimer's disease: Evidence from in vitro, in vivo, and clinical studies. Exp Neurol 2024; 374:114683. [PMID: 38211684 DOI: 10.1016/j.expneurol.2024.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a prevalent comorbidity among patients with Alzheimer's disease (AD), present in up to 80% of cases with varying levels of severity. There is evidence to suggest that CAA might intensify cognitive deterioration in AD patients, thereby accelerating the development of AD pathology. As a source of amyloids, it has been postulated that platelets play a significant role in the pathogenesis of both AD and CAA. Although several studies have demonstrated that platelet activation plays an important role in the pathogenesis of AD and CAA, a clear understanding of the mechanisms involved in the three steps: platelet activation, platelet adhesion, and platelet aggregation in AD pathogenesis still remains elusive. Moreover, potential therapeutic targets in platelet-mediated AD pathogenesis have not been explicitly addressed. Therefore, the aim of this review is to collate and discuss the in vitro, in vivo, and clinical evidence related to platelet dysfunction, including associated activation, adhesion, and aggregation, with specific reference to amyloid-related AD pathogenesis. Potential therapeutic targets of platelet-mediated AD pathogenesis are also discussed. By enriching the understanding of the intricate relationship between platelet dysfunction and onset of AD, researchers may unveil new therapeutic targets or strategies to tackle this devastating neurodegeneration.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Liu J, Xiao G, Liang Y, He S, Lyu M, Zhu Y. Heart-brain interaction in cardiogenic dementia: pathophysiology and therapeutic potential. Front Cardiovasc Med 2024; 11:1304864. [PMID: 38327496 PMCID: PMC10847563 DOI: 10.3389/fcvm.2024.1304864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Diagnosis and treatment of patients with cardiovascular and neurologic diseases primarily focus on the heart and brain, respectively. An increasing number of preclinical and clinical studies have confirmed a causal relationship between heart and brain diseases. Cardiogenic dementia is a cognitive impairment caused by heart dysfunction and has received increasing research attention. The prevention and treatment of cardiogenic dementia are essential to improve the quality of life, particularly in the elderly and aging population. This study describes the changes in cognitive function associated with coronary artery disease, myocardial infarction, heart failure, atrial fibrillation and heart valve disease. An updated understanding of the two known pathogenic mechanisms of cardiogenic dementia is presented and discussed. One is a cascade of events caused by cerebral hypoperfusion due to long-term reduction of cardiac output after heart disease, and the other is cognitive impairment regardless of the changes in cerebral blood flow after cardiac injury. Furthermore, potential medications for the prevention and treatment of cardiogenic dementia are reviewed, with particular attention to multicomponent herbal medicines.
Collapse
Affiliation(s)
- Jiaxu Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangxu Xiao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujuan Liang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuang He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Lyu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Cheng KH, Tu HP, Cheng KC, Scherrer-Crosbie M, Hsu TY. Cardiovascular and Neurological Outcomes in Patients Treated with Edoxaban for Atrial Fibrillation and Characteristics in Patients with Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.25.23297577. [PMID: 37961728 PMCID: PMC10635200 DOI: 10.1101/2023.10.25.23297577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Direct oral anticoagulants (DOACs) outperform warfarin in vascular and bleeding events in atrial fibrillation (AF) patients. Yet, effects of DOACs on congestive heart failure (CHF) and Alzheimer's disease (AD) remain less explored. METHODS Using the Taiwan National Health Insurance Research Database, a nationwide retrospective cohort study was conducted. The study matched 5,683 non-valvular atrial fibrillation (NVAF) edoxaban patients with 11,366 warfarin patients, and 703 NVAF with cancer (NVAF-C) edoxaban patients with 1,406 warfarin patients. Vasular and non-vascular outcomes, with focuses on CHF and AD, were compared between the edoxaban and warfarin users. RESULTS Edoxaban significantly lowered adjusted hazrad ratio (aHR) of all-cause mortality, hospitalization for gastrointestinal bleeding, and CHF (0.37, 0.74, and 0.26, respectively, in NVAF; 0.39, 0.67, and 0.31, respectively, in NVAF-C, all p < 0.05), compared to warfarin. Edoxaban was associated with significantly lower aHRs of acute myocardial infarction, peripheral artery disease, venous thromboembolism, pulmonary embolism, and AD (0.71, 0.48, 0.55, 0.20, and 0.66, respectively; all p < 0.05) in NVAF patients versus warfarin. However, edoxaban had higher aHR of hospitalized bleeding (1.19, p = 0.002) than warfarin in NVAF patients, but not in NVAF-C patients. CONCLUSIONS Edoxaban demonstrated lowered CHF risks in both NVAF and NVAF-C patients, and reduced AD occurrence in NVAF patients versus warfarin. These findings advocate for edoxaban's use in AF cases. CLINICAL PERSPECTIVE What Is New?: The study reveals that in patients with atrial fibrillation (AF), edoxaban, a direct oral anticoagulant (DOAC), demonstrates significant advantages over warfarin. Notably, edoxaban is associated with a reduced risk of congestive heart failure (CHF) and Alzheimer's disease (AD) when compared to warfarin.Clinical Implications?: These findings have important clinical implications. Edoxaban appears to be a superior anticoagulant choice for AF patients, as it lowers the risk of CHF and AD. This highlights the potential of edoxaban to improve patient outcomes and underscores its relevance for managing AF cases.
Collapse
|
8
|
Wang W, Fan W, Su Y, Hong K. A comparison of the effects of NOAC and VKA therapy on the incidence of dementia in patients with atrial fibrillation: A systematic review and meta-analysis. Clin Cardiol 2023; 46:866-876. [PMID: 37366141 PMCID: PMC10436784 DOI: 10.1002/clc.24076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Atrial fibrillation (AF) patients are more susceptible to dementia, but the results about the effect of oral anticoagulants (OACs) on the risk of dementia are not consistent. We hypothesize that OAC is associated with a reduced risk of dementia with AF and that nonvitamin K antagonist oral anticoagulants (NOAC) are superior to vitamin K antagonists (VKA). Four databases were systematically searched until July 1, 2022. Two reviewers independently selected literature, evaluated quality, and extracted data. Data were examined using pooled hazard ratios (HRs) and 95% confidence intervals (CIs). Fourteen research studies involving 910 patients were enrolled. The findings indicated that OACs were associated with a decreased risk of dementia (pooled HR: 0.68, 95% CI: 0.55-0.82, I2 = 87.7%), and NOACs had a stronger effect than VKAs (pooled HR: 0.87, 95% CI: 0.79-0.95, I2 = 72%), especially in participants with a CHA2DS2VASc score ≥ 2 (pooled HR: 0.85, 95% CI: 0.72-0.99). Subgroup analysis demonstrated no statistical significance among patients aged <65 years old (pooled HR: 0.83, 95% CI: 0.64-1.07), patients in "based on treatment" studies (pooled HR: 0.89, 95% CI: 0.75-1.06), or people with no stroke background (pooled HR: 0.90, 95% CI: 0.71-1.15). This analysis revealed that OACs were related to the reduction of dementia incidence in AF individuals, and NOACs were better than VKAs, remarkably in people with a CHA2DS2VASc score ≥ 2. The results should be confirmed by further prospective studies, particularly in patients in "based on treatment" studies aged <65 years old with a CHA2DS2VASc score < 2 or without a stroke background.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Jiangxi Key Laboratory of Molecular MedicineNanchangJiangxiChina
| | - Weiguo Fan
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Jiangxi Key Laboratory of Molecular MedicineNanchangJiangxiChina
| | - Yuhao Su
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Jiangxi Key Laboratory of Molecular MedicineNanchangJiangxiChina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Jiangxi Key Laboratory of Molecular MedicineNanchangJiangxiChina
- Department of Genetic MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
9
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
10
|
Lou T, Tao B, Chen M. Relationship of Apolipoprotein E with Alzheimer's Disease and Other Neurological Disorders: An Updated Review. Neuroscience 2023; 514:123-140. [PMID: 36736614 DOI: 10.1016/j.neuroscience.2023.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) and other neurodegenerative diseases, for which there is no effective cure, cause great social burden. Apolipoprotein E (APOE) is an important lipid transporter, which has been shown to have a close relationship with AD and other neurological disorders in an increasing number of studies, suggesting its potential as a therapeutic target. In this review, we summarize the recent advances in clinical and basic research on the role of APOE in the pathogenesis of multiple neurological diseases, with an emphasis on the new associations between APOE and AD, and between APOE and depression. The progress of APOE research in Parkinson's disease (PD) and some other neurological diseases is briefly discussed.
Collapse
Affiliation(s)
- Tianwen Lou
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Borui Tao
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Krupenin PM, Voskresenskaya ON, Napalkov DA, Sokolova AA. Cognitive impairment and small vessel disease in atrial fibrillation. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2022. [DOI: 10.14412/2074-2711-2022-6-55-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- P. M. Krupenin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - O. N. Voskresenskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - D. A. Napalkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - A. A. Sokolova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|