1
|
Yu W, Zhao Y, Ilyas I, Wang L, Little PJ, Xu S. The natural polyphenol fisetin in atherosclerosis prevention: a mechanistic review. J Pharm Pharmacol 2024:rgae053. [PMID: 38733634 DOI: 10.1093/jpp/rgae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
The incidence and mortality rate of atherosclerotic cardiovascular disease (ASCVD) is increasing yearly worldwide. Recently, a growing body of evidence has unveiled the anti-atherosclerotic properties of fisetin, a natural polyphenol compound. In this article, we reviewed the pharmacologic actions of fisetin on experimental atherosclerosis and its protective effects on disease-relevant cell types such as endothelial cells, macrophages, vascular smooth muscle cells, and platelets. Based on its profound cardiovascular actions, fisetin holds potential for clinical translation and could be developed as a potential therapeutic option for atherosclerosis and its related complications. Large-scale randomized clinical trials are warranted to ascertain the safety and efficacy of fisetin in patients with or high risk for ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- Anhui Renovo Pharmaceutical Co., Ltd, Hefei, Anhui, 230001, China
- Anhui Guozheng Pharmaceutical Co., Ltd, Hefei, Anhui, 230041, China
| | - Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peter J Little
- Department of Pharmacy, Guangzhou Xinhua University, No. 721, Guangshan Road 1, Tianhe District, Guangzhou, 510520, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
2
|
Han X, Jia X, Sheng C, Li M, Han J, Duan F, Wang K. A comparison analysis of the somatic mutations in early-onset gastric cancer and traditional gastric cancer. Clin Res Hepatol Gastroenterol 2024; 48:102287. [PMID: 38253255 DOI: 10.1016/j.clinre.2024.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Early onset gastric cancer (EOGC) has been on the rise in recent years and differs slightly in pathology from traditional gastric cancer (TGC). Somatic mutations have an essential role in the development of gastric cancer. We aimed to investigate these two types of gastric cancers at the level of somatic mutations and to further understanding of gastric cancer development. METHODS Somatic mutation, copy number variation (CNV), and clinical information were obtained from TCGA and UCSC Xena. Samples were divided into EOGC (< 50 years old, N = 28) and TGC (≥ 50 years old, N = 395) groups based on age. R packages "maftools" and "sigminer" were used to identify mutation signatures, while CNV information was processed using GISTIC2.0. RESULTS CDH1(21 %, P = 0.030) and ARID1A (28 %, P = 0.014) were more common in EOGC and TGC, respectively. The mutation frequency of ARID1A increased with age, while the opposite was true for CDH1. Sex, Lauren classifications, tumor mutation burden levels, mutation status of TP53, MUC6, NIPBL, KRAS, and copy number variation of the WOOX can affect the activity of the mutant signature. CONCLUSIONS Early-onset gastric cancer and traditional gastric cancer have distinct somatic mutation signatures, each with its own relatively specific high-frequency mutated genes, and the gene's mutation frequency correlates with age. Several clinical factors and genetic status affect the activity of some mutational features in gastric cancer in both groups.
Collapse
Affiliation(s)
- Xiaoxuan Han
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Xiaoxiao Jia
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Chong Sheng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Mengyuan Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Jinxi Han
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Fujiao Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Kaijuan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Key Laboratory of Tumor Epidemiology of Henan Province, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
3
|
Kim SG, Sung JY, Kang YJ, Choi HC. Fisetin alleviates cellular senescence through PTEN mediated inhibition of PKCδ-NOX1 pathway in vascular smooth muscle cells. Arch Gerontol Geriatr 2023; 108:104927. [PMID: 36645971 DOI: 10.1016/j.archger.2023.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Reactive oxygen species (ROS) are a key risk factor of cellular senescence and age-related diseases, and protein kinase C (PKC) has been shown to activate NADPH oxidases (NOXs), which generate ROS. Although PKC activation induces oxidative stress, leading to the cellular dysfunction in various cell types, the correlation between PKC and senescence has not been reported in vascular smooth muscle cell (VSMC). Several studies have indicated cellular senescence is accompanied by phosphatase and tensin homolog (PTEN) loss and that an interaction exists between PTEN and PKC. Therefore, we aimed to determine whether PTEN and PKC are associated with VSMC senescence and to investigate the mechanism involved. We found hydrogen peroxide (H2O2) decreased PTEN expression and increased PKCδ phosphorylation. Moreover, H2O2 upregulated the NOX1 subunits, p22phox and p47phox, and induced VSMC senescence via p53-p21 signaling pathway. We identified PKCδ activation contributed to VSMC senescence through activation of NOX1 and ROS production. However, fisetin inhibited cellular senescence induced by the PTEN-PKCδ-NOX1-ROS signaling pathway, and this anti-aging effect was attributed to reduced ROS production caused by suppressing NOX1 activation. These results suggest that the PTEN-PCKδ signaling pathway is directly related to senescence via NOX1 activation and that the downregulation of PKCδ by flavonoids provides a potential means of treating age-associated diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
4
|
Chowdhury SG, Misra S, Karmakar P. Understanding the Impact of Obesity on Ageing in the Radiance of DNA Metabolism. J Nutr Health Aging 2023; 27:314-328. [PMID: 37248755 DOI: 10.1007/s12603-023-1912-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 05/31/2023]
Abstract
Ageing is a multi-factorial phenomenon which is considered as a major risk factor for the development of neurodegeneration, osteoporosis, cardiovascular disease, dementia, cancer, and other chronic diseases. Phenotypically, ageing is related with a combination of molecular, cellular, and physiological levels like genomic and epi-genomic alterations, loss of proteostasis, deregulation of cellular and subcellular function and mitochondrial dysfunction. Though, no single molecular mechanism accounts for the functional decline of different organ systems in older humans but accumulation of DNA damage or mutations is a dominant theory which contributes largely to the development of ageing and age-related diseases. However, mechanistic, and hierarchical order of these features of ageing has not been clarified yet. Scientific community now focus on the effect of obesity on accelerated ageing process. Obesity is a complex chronic disease that affects multiple organs and tissues. It can not only lead to various health conditions such as diabetes, cancer, and cardiovascular disease but also can decrease life expectancy which shows similar phenotype of ageing. Higher loads of DNA damage were also observed in the genome of obese people. Thus, inability of DNA damage repair may contribute to both ageing and obesity apart from cancer predisposition. The present review emphasizes on the involvement of molecular phenomenon of DNA metabolism in development of obesity and how it accelerates ageing in mammals.
Collapse
Affiliation(s)
- S G Chowdhury
- Parimal Karmakar, Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India.
| | | | | |
Collapse
|
5
|
Chen J, Tang LY, Powell ME, Jordan JM, Baugh LR. Genetic analysis of daf-18/PTEN missense mutants for starvation resistance and developmental regulation during Caenorhabditis elegans L1 arrest. G3 (BETHESDA, MD.) 2022; 12:jkac092. [PMID: 35451480 PMCID: PMC9157142 DOI: 10.1093/g3journal/jkac092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Mutations in the well-known tumor suppressor PTEN are observed in many cancers. PTEN is a dual-specificity phosphatase that harbors lipid and protein-phosphatase activities. The Caenorhabditis elegans PTEN ortholog is daf-18, which has pleiotropic effects on dauer formation, aging, starvation resistance, and development. Function of 3 daf-18 point-mutants, G174E, D137A, and C169S, had previously been investigated using high-copy transgenes in a daf-18 null background. These alleles were generated based on their mammalian counterparts and were treated as though they specifically disrupt lipid or protein-phosphatase activity, or both, respectively. Here, we investigated these alleles using genome editing of endogenous daf-18. We assayed 3 traits relevant to L1 starvation resistance, and we show that each point mutant is essentially as starvation-sensitive as a daf-18 null mutant. Furthermore, we show that G174E and D137A do not complement each other, suggesting overlapping effects on lipid and protein-phosphatase activity. We also show that each allele has strong effects on nucleocytoplasmic localization of DAF-16/FoxO and dauer formation, both of which are regulated by PI3K signaling, similar to a daf-18 null allele. In addition, each allele also disrupts M-cell quiescence during L1 starvation, though D137A has a weaker effect than the other alleles, including the null. Our results confirm that daf-18/PTEN is important for promoting starvation resistance and developmental arrest and that it is a potent regulator of PI3K signaling, and they highlight challenges of using genetic analysis to link specific DAF-18/PTEN enzymatic activities to particular phenotypes.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Linda Y Tang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maya E Powell
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - James M Jordan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Kim SG, Sung JY, Kim JR, Choi HC. Fisetin-induced PTEN expression reverses cellular senescence by inhibiting the mTORC2-Akt Ser473 phosphorylation pathway in vascular smooth muscle cells. Exp Gerontol 2021; 156:111598. [PMID: 34695518 DOI: 10.1016/j.exger.2021.111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
Cellular senescence is caused by a wide range of intracellular and extracellular stimuli and influences physiological functions, leading to the progression of age-related diseases. Many studies have shown that cellular senescence is related to phosphatase and tension homolog deleted on chromosome ten (PTEN) loss and mammalian target of rapamycin (mTOR) activation. Although it has been reported that mTOR complex 1 (mTORC1) is major anti-aging target in several cell types, the functions and mechanisms of mTOR complex 2 (mTORC2) during aging have not been elucidated in vascular smooth muscle cells (VSMCs). Therefore, the aim of this study was to reveal the relationship between PTEN and mTORC2 during VSMC senescence. We found adriamycin-induced VSMC senescence was accompanied by reduced PTEN protein expression and upregulation of the mTORC2-Akt (Ser 473) pathway and that fisetin treatment reduced VSMC senescence by increasing PTEN and decreasing mTORC2 protein levels. Furthermore, PTEN played a primary role in the anti-aging effect of fisetin, and fisetin-activated PTEN directly regulated the mTORC2-Akt (Ser 473) signaling pathway, and attenuated senescence phenotypes such as senescence-associated β-galactosidase (SA-β-gal) and the p53-p21 signaling pathway in VSMCs. In mouse aortas, fisetin delayed aging by regulating the PTEN-mTORC2-Akt (Ser473) signaling pathway. These results suggest PTEN and mTORC2 are associated with cellular senescence in VSMCs and that the mTORC2-Akt (Ser 473) signaling pathway be considered a new target for preventing senescence-related diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
7
|
Peripheral Circulating Exosomal miRNAs Potentially Contribute to the Regulation of Molecular Signaling Networks in Aging. Int J Mol Sci 2020; 21:ijms21061908. [PMID: 32168775 PMCID: PMC7139634 DOI: 10.3390/ijms21061908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
People are living longer than ever. Consequently, they have a greater chance for developing a functional impairment or aging-related disease, such as a neurodegenerative disease, later in life. Thus, it is important to identify and understand mechanisms underlying aging as well as the potential for rejuvenation. Therefore, we used next-generation sequencing to identify differentially expressed microRNAs (miRNAs) in serum exosomes isolated from young (three-month-old) and old (22-month-old) rats and then used bioinformatics to explore candidate genes and aging-related pathways. We identified 2844 mRNAs and 68 miRNAs that were differentially expressed with age. TargetScan revealed that 19 of these miRNAs are predicated to target the 766 mRNAs. Pathways analysis revealed signaling components targeted by these miRNAs: mTOR, AMPK, eNOS, IGF, PTEN, p53, integrins, and growth hormone. In addition, the most frequently predicted target genes regulated by these miRNAs were EIF4EBP1, insulin receptor, PDK1, PTEN, paxillin, and IGF-1 receptor. These signaling pathways and target genes may play critical roles in regulating aging and lifespan, thereby validating our analysis. Understanding the causes of aging and the underlying mechanisms may lead to interventions that could reverse certain aging processes and slow development of aging-related diseases.
Collapse
|
8
|
Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing. Cells 2020; 9:E200. [PMID: 31947601 PMCID: PMC7016612 DOI: 10.3390/cells9010200] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of genome integrity in the mammalian female germline from primordial follicle arrest to activation of growth to oocyte maturation is fundamental to ensure reproductive success. As oocytes are formed before birth and may remain dormant for many years, it is essential that defence mechanisms are monitored and well maintained. The phosphatase and tensin homolog of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) is a major signalling pathway governing primordial follicle recruitment and growth. This pathway also contributes to cell growth, survival and metabolism, and to the maintenance of genomic integrity. Accelerated primordial follicle activation through this pathway may result in a compromised DNA damage response (DDR). Additionally, the distinct DDR mechanisms in oocytes may become less efficient with ageing. This review considers DNA damage surveillance mechanisms and their links to the PTEN/PI3K/Akt signalling pathway, impacting on the DDR during growth activation of primordial follicles, and in ovarian ageing. Targeting DDR mechanisms within oocytes may be of value in developing techniques to protect ovaries against chemotherapy and in advancing clinical approaches to regulate primordial follicle activation.
Collapse
Affiliation(s)
- Mila Maidarti
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
- Obstetrics and Gynaecology Department, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
| | - Evelyn E. Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
9
|
Naderali E, Valipour B, Khaki AA, Soleymani Rad J, Alihemmati A, Rahmati M, Nozad Charoudeh H. Positive Effects of PI3K/Akt Signaling Inhibition on PTEN and P53 in Prevention of Acute Lymphoblastic Leukemia Tumor Cells. Adv Pharm Bull 2019; 9:470-480. [PMID: 31592121 PMCID: PMC6773944 DOI: 10.15171/apb.2019.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose: The PI3K/Akt signaling pathway regulates cell growth, proliferation and viability in
hematopoietic cells. This pathway always dysregulates in acute lymphoblastic leukemia (ALL).
PTEN and P53 are tumor suppressor genes correlated with PI3K/Akt signaling pathway, and both
have a tight link in regulation of cell proliferation and cell death. In this study, we investigated
the effects of dual targeting of PI3K/Akt pathway by combined inhibition with nvp-BKM-120
(PI3K inhibitor) and MK-2206 (Akt inhibitor) in relation with PTEN and P53 on apoptosis and
proliferation of leukemia cells.
Methods: Both T and B ALL cell lines were treated with both inhibitors alone or in combination
with each other, and induction of apoptosis and inhibition of proliferation were evaluated by
flow cytometry. Expression levels of PTEN as well as p53 mRNA and protein were measured by
real-time qRT-PCR and western blot, respectively.
Results: We indicated that both inhibitors (BKM-120 and MK-2206) decreased cell viability and
increased cytotoxicity in leukemia cells. Reduction in Akt phosphorylation increased PTEN and
p53 mRNA and p53 protein level (in PTEN positive versus PTEN negative cell lines). Additionally,
both inhibitors, particularly in combination with each other, increased apoptosis (evaluated
with Annexin V and caspase 3) and reduced proliferation (Ki67 expression) in leukemia cells.
However, administration of IL7 downregulated PTEN and P53 mRNA expression and rescued
cancer cells following inhibition of BKM-120 and MK-2206.
Conclusion: This investigation suggested that inhibition of Akt and PI3K could be helpful in
leukemia treatment.
Collapse
Affiliation(s)
- Elahe Naderali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afshin Khaki
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Clinical Biochemistry Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
10
|
Tait IS, Li Y, Lu J. Effects of PTEN on the longevity of cultured human umbilical vein endothelial cells: the role of antioxidants. Int J Mol Med 2014; 35:277-84. [PMID: 25395086 DOI: 10.3892/ijmm.2014.1999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Ageing is a major cause of illness, disease and mortality, mainly due to the shortening of telomeres, resulting in cells undergoing senescence and apoptosis. Increasing autophagy and the levels of antioxidants removes oxidants that cause DNA and telomere damage, thus reducing the rate at which telomeres shorten, resulting in a longer cellular lifespan. Phosphatase and tensin homolog (PTEN) has been shown to increase the lifespan of organisms by upregulating pathways involved in DNA damage repair, autophagy/antioxidants. The aim of this study was to investigate the effects of the overexpression of PTEN on the longevity of human cell cultures by examining the increase in antioxidant potential. Human umbilical vein endothelial cell (HUVEC) cultures were transfected with PTEN plasmids using lipofectamine. An assay was performed to quantify the protein levels of PTEN and the antioxidant potential of the cell cultures. The cell cultures were maintained until senescence occurred in order to determine longevity. The results of each assay were then compared and correlated with each other and with the longevity of the cells. The transfected cultures showed a significant increase in PTEN protein levels, total antioxidant potential and longevity (all P-values <0.001) compared with the non-transfected cell cultures. The correlation coefficient between cell longevity and PTEN levels was 0.8727; and the correlation coefficient between cell longevity and antioxidant potential was 0.6564. The successful transfection of PTEN led to an increase in PTEN levels, antioxidant potential and an increased cellular longevity. This study demonstrates that there is a potential for PTEN to be used to extend human longevity. This can lay the foundation for further studies to be carried out on humans involving PTEN and longevity.
Collapse
Affiliation(s)
- Izak S Tait
- School of Applied Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- School of Applied Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Jun Lu
- School of Applied Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|