1
|
Senigarapu S, Driscoll JJ. A review of recent clinical trials to evaluate disease-modifying therapies in the treatment of cardiac amyloidosis. Front Med (Lausanne) 2024; 11:1477988. [PMID: 39540049 PMCID: PMC11557331 DOI: 10.3389/fmed.2024.1477988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiac amyloidosis (CA) is a serious condition that results in infiltrative cardiomyopathy and heart failure with preserved ejection fraction (HFpEF) that is caused by the extracellular deposition of amyloid fibrils within heart tissue. While many important features of CA have been known for years, its prevalence in elderly patients with HF is increasingly being recognized. Plasma cells produce monoclonal immunoglobulin light chains which results in the formation and aggregation of amyloid fibrils that are responsible for AL amyloidosis. CA is classified as originating from either transthyretin (ATTR) or light chain (AL) amyloidosis. ATTR CA may result from a genetic mutation in the TTR gene, which is inherited (ATTRv), or from age-related deposition from wild-type ATTR (ATTRwt). Cardiac involvement in AL amyloidosis is attributed to either of two mechanisms: the extracellular deposition of amyloid fibril in the myocardium, or direct cardiotoxicity from the fibril aggregates. Typing of amyloid fibrils, a critical determinant of therapy, has also improved with wider availability of laser capture and mass spectrometry of histologic specimens. Specific and accurate evaluation of CA is now possible using cardiac magnetic resonance imaging and bone scintigraphy tracers. Survival in CA has improved markedly as novel chemotherapy agents have become available, but challenges remain in advanced disease. Broadening the amyloid-specific therapeutic landscape to include RNA inhibitors, fibril formation stabilizers and inhibitors, and immunotherapeutic targeting of amyloid deposits holds promise and may improve outcomes in systemic and cardiac amyloidoses. Treatment strategies for CA has recently undergone transformative changes, leading to some progress in outcomes for certain patients. Here, we discuss the basic features of CA as well as the emergence of novel, disease-modifying strategies that have been recently evaluated in clinical trials for the treatment of CA.
Collapse
Affiliation(s)
- Sindhuja Senigarapu
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - James J. Driscoll
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Division of Hematology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
2
|
Hameed H, Sarwar HS, Younas K, Zaman M, Jamshaid M, Irfan A, Khalid M, Sohail MF. Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers. Funct Integr Genomics 2024; 24:177. [PMID: 39340586 DOI: 10.1007/s10142-024-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, 17 Avenue des sciences, 91190, Orsay, France
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Maha Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Farhan Sohail
- Department of Chemistry, SBASSE, Lahore University of Management Sciences (LUMS), Lahore, 54000, Pakistan
- Alliant College of Pharmacy and Allied Health Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Stefani G, Kouvata E, Vassilopoulos G. Light-Chain Amyloidosis: The Great Impostor. Life (Basel) 2023; 14:42. [PMID: 38255657 PMCID: PMC10817319 DOI: 10.3390/life14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Light-chain amyloidosis (AL) is a disease of protean manifestations due to a wide spectrum of organs that can be affected. The disorder is caused by the deposition of an extracellular amorphous material, the amyloid, which is produced by malignant plasma cells. The latter usually reside in the bone marrow; plasma cell infiltration is often low, in sharp contrast to what we observe in multiple myeloma. The disease may run below the physician's radar for a while before clinical suspicion is raised and targeted tests are performed. In this short review, we try to answer most of the questions that a practicing physician may ask in a relative clinical setting. The text is formed as a series of reader-friendly questions that cover the subject of AL amyloidosis from history to current therapy.
Collapse
Affiliation(s)
- Georgia Stefani
- Department of Hematology, Larisa University Hospital, 41110 Larisa, Greece; (G.S.); (G.V.)
| | - Evangelia Kouvata
- Department of Hematology, Larisa University Hospital, 41110 Larisa, Greece; (G.S.); (G.V.)
| | - George Vassilopoulos
- Department of Hematology, Larisa University Hospital, 41110 Larisa, Greece; (G.S.); (G.V.)
- Cell and Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Gospodinova M, Zhelyazkova S, Chamova T, Asenov O, Pavlova Z, Todorov T, Mikova D, Palashev Y, Gruev I, Kundurdjiev A, Todorova A, Tournev I. Case Report: Transthyretin Glu54Leu-a rare mutation with predominant cardiac phenotype. Front Cardiovasc Med 2023; 10:1228410. [PMID: 38028480 PMCID: PMC10644754 DOI: 10.3389/fcvm.2023.1228410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
We report two unrelated Bulgarian families with hereditary transthyretin (ATTR) amyloidosis due to a rare p.Glu74Leu (Glu54Leu) pathogenic variant found in seven individuals-three of them symptomatic. Only one family with the same variant and with a Swedish origin has been clinically described so far. Our patients are characterized by predominant cardiac involvement, very much similar to the Swedish patients. Although the initial complaint was bilateral carpal tunnel syndrome, advanced amyloid cardiomyopathy was found in two symptomatic carriers at diagnosis with heart failure manifestations. The neurological involvement was considered as mild, with mainly sensory signs and symptoms being present. We followed a non-biopsy algorithm to confirm the diagnosis. Tafamidis 61 mg has been initiated as the only approved disease modifying treatment for ATTR cardiomyopathy. Clinical stability in the absence of adverse events has been observed at follow up.
Collapse
Affiliation(s)
- Mariana Gospodinova
- Expert Centre for ATTR Cardiac Amyloidosis, St Ivan Rilski University Hospital, Sofia, Bulgaria
| | - Sashka Zhelyazkova
- Clinic of Neurology, Aleksandrovska University Hospital, Medical University, Sofia, Bulgaria
| | - Teodora Chamova
- Clinic of Neurology, Aleksandrovska University Hospital, Medical University, Sofia, Bulgaria
| | - Ognyan Asenov
- Clinic of Neurology, Aleksandrovska University Hospital, Medical University, Sofia, Bulgaria
| | | | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory “Genica”, Sofia, Bulgaria
| | - Dilyana Mikova
- Department of Nuclear Medicine, St Ivan Rilski University Hospital, Sofia, Bulgaria
| | - Yordan Palashev
- Department of Nuclear Medicine, St Ivan Rilski University Hospital, Sofia, Bulgaria
- Clinical Center of Nuclear Medicine and Radiology, Medical University, Sofia, Bulgaria
| | - Ivan Gruev
- National Multi-profile Transport Hospital“Tsar Boris III”, Sofia, Bulgaria
| | - Atanas Kundurdjiev
- Expert Centre for ATTR Cardiac Amyloidosis, St Ivan Rilski University Hospital, Sofia, Bulgaria
- Clinic of Nephrology, St Ivan Rilski University Hospital, Sofia, Bulgaria
| | - Albena Todorova
- Genetic Medico-Diagnostic Laboratory “Genica”, Sofia, Bulgaria
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria
| | - Ivailo Tournev
- Clinic of Neurology, Aleksandrovska University Hospital, Medical University, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| |
Collapse
|