1
|
Liu X, Li R, Xiu Z, Tang S, Duan Y. Toxicity mechanism of acrolein on energy metabolism disorder and apoptosis in human ovarian granulosa cells. Toxicology 2024; 506:153861. [PMID: 38866128 DOI: 10.1016/j.tox.2024.153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Acrolein (ACR), an unsaturated, highly reactive aldehyde, is a widespread environmental toxin. ACR exerts permanent and irreversible side effects on ovarian functions. Granulosa cells play a crucial role in supporting ovarian function. Thus, in this study, we investigated the toxicity effects of granulosa cells induced by ACR. Following treatment with varying ACR concentrations (0, 12.5, 25, 50, and 100 μM), we observed that ACR exposure induced reactive oxygen species accumulation, mitochondrial energy metabolism disorder, and apoptosis in KGN cells (a human ovarian granulosa cell line) in a dose-dependent manner. In addition, mitochondrial biogenesis in KGN cells displayed biphasic changes after ACR exposure, with activation at a low ACR dose (12.5 μM), but inhibition at higher ACR doses (≥50 μM). SIRT1/PGC-1α-mediated mitochondrial biogenesis is crucial for maintaining intracellular mitochondrial homeostasis and cellular function. The inhibition/activation of the SIRT1/PGC-1α pathway in KGN cells validated its role in ACR-induced damage. The results indicated that the inhibition of the SIRT1/PGC-1α pathway aggravated ACR-induced cell damage, whereas its activation partially counteracted ACR-induced cell damage. This study attempted to uncover a novel mechanism of ACR-induced ovarian toxicity so as to provide an effective treatment option for safeguarding female reproductive health from the adverse effects of ACR.
Collapse
Affiliation(s)
- Xueping Liu
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China
| | - Rongxia Li
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Gynecology Medicine, The Second Hospital of Hebei Medicine University, Shijiazhuang, Hebei Province 050004, China
| | - Zi Xiu
- College of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Siling Tang
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China
| | - Yancang Duan
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Hebei Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, Hebei Province 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, Hebei Province 050091, China.
| |
Collapse
|
2
|
Chen L, Chen G, Gai T, Zhou X, Zhu J, Wang R, Wang X, Guo Y, Wang Y, Xie Z. L-Theanine Prolongs the Lifespan by Activating Multiple Molecular Pathways in Ultraviolet C-Exposed Caenorhabditis elegans. Molecules 2024; 29:2691. [PMID: 38893565 PMCID: PMC11173996 DOI: 10.3390/molecules29112691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
L-theanine, a unique non-protein amino acid, is an important bioactive component of green tea. Previous studies have shown that L-theanine has many potent health benefits, such as anti-anxiety effects, regulation of the immune response, relaxing neural tension, and reducing oxidative damage. However, little is known concerning whether L-theanine can improve the clearance of mitochondrial DNA (mtDNA) damage in organisms. Here, we reported that L-theanine treatment increased ATP production and improved mitochondrial morphology to extend the lifespan of UVC-exposed nematodes. Mechanistic investigations showed that L-theanine treatment enhanced the removal of mtDNA damage and extended lifespan by activating autophagy, mitophagy, mitochondrial dynamics, and mitochondrial unfolded protein response (UPRmt) in UVC-exposed nematodes. In addition, L-theanine treatment also upregulated the expression of genes related to mitochondrial energy metabolism in UVC-exposed nematodes. Our study provides a theoretical basis for the possibility that tea drinking may prevent mitochondrial-related diseases.
Collapse
Affiliation(s)
- Liangwen Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
| | - Tingting Gai
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
| | - Jinchi Zhu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Ruiyi Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Xuemei Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Yujie Guo
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Yun Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Biological Engineering, Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232001, China (J.Z.)
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.C.)
| |
Collapse
|
3
|
Chen C, Wang J, Zhu X, Hu J, Liu C, Liu L. Energy metabolism and redox balance: How phytochemicals influence heart failure treatment. Biomed Pharmacother 2024; 171:116136. [PMID: 38215694 DOI: 10.1016/j.biopha.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Heart Failure (HF) epitomizes a formidable global health quandary characterized by marked morbidity and mortality. It has been established that severe derangements in energy metabolism are central to the pathogenesis of HF, culminating in an inadequate cardiac energy milieu, which, in turn, precipitates cardiac pump dysfunction and systemic energy metabolic failure, thereby steering the trajectory and potential recuperation of HF. The conventional therapeutic paradigms for HF predominantly target amelioration of heart rate, and cardiac preload and afterload, proffering symptomatic palliation or decelerating the disease progression. However, the realm of therapeutics targeting the cardiac energy metabolism remains largely uncharted. This review delineates the quintessential characteristics of cardiac energy metabolism in healthy hearts, and the metabolic aberrations observed during HF, alongside the associated metabolic pathways and targets. Furthermore, we delve into the potential of phytochemicals in rectifying the redox disequilibrium and the perturbations in energy metabolism observed in HF. Through an exhaustive analysis of recent advancements, we underscore the promise of phytochemicals in modulating these pathways, thereby unfurling a novel vista on HF therapeutics. Given their potential in orchestrating cardiac energy metabolism, phytochemicals are emerging as a burgeoning frontier for HF treatment. The review accentuates the imperative for deeper exploration into how these phytochemicals specifically intervene in cardiac energy metabolism, and the subsequent translation of these findings into clinical applications, thereby broadening the horizon for HF treatment modalities.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
4
|
Zhao Y, Ye X, Xiong Z, Ihsan A, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Anadón A, Wang X, Martínez MA. Cancer Metabolism: The Role of ROS in DNA Damage and Induction of Apoptosis in Cancer Cells. Metabolites 2023; 13:796. [PMID: 37512503 PMCID: PMC10383295 DOI: 10.3390/metabo13070796] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a huge challenge for people worldwide. High reactive oxygen species (ROS) levels are a recognized hallmark of cancer and an important aspect of cancer treatment research. Abnormally elevated ROS levels are often attributable to alterations in cellular metabolic activities and increased oxidative stress, which affects both the development and maintenance of cancer. Moderately high levels of ROS are beneficial to maintain tumor cell genesis and development, while toxic levels of ROS have been shown to be an important force in destroying cancer cells. ROS has become an important anticancer target based on the proapoptotic effect of toxic levels of ROS. Therefore, this review summarizes the role of increased ROS in DNA damage and the apoptosis of cancer cells caused by changes in cancer cell metabolism, as well as various anticancer therapies targeting ROS generation, in order to provide references for cancer therapies based on ROS generation.
Collapse
Affiliation(s)
- Yongxia Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaochun Ye
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifeng Xiong
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
5
|
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, Zhang X, Chai J. Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat 2023; 68:100936. [PMID: 36764075 DOI: 10.1016/j.drup.2023.100936] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
AIMS Long non-coding RNAs (lncRNAs), as one of the components of exosomes derived from cancer-associated fibroblasts (CAFs), exhibit a crucial role in the pathogenesis and chemoresistance of gastric cancer (GC). Herein, we investigated the role and mechanism of a novel lncRNA disheveled binding antagonist of beta catenin3 antisense1 (DACT3-AS1) and its involvement in GC. METHODS DACT3-AS1 was identified by RNA-sequencing and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The functional role of DACT3-AS1 in GC was evaluated using in vitro and in vivo experiments including Transwell assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, immunoblotting, and xenograft tumor mouse model. Dual-luciferase reporter assay was performed to assess the association between genes. RESULTS DACT3-AS1 was downregulated and involved in poor prognosis of patients with GC. The results from both in vitro and in vivo experiments showed that DACT3-AS1 suppressed cell proliferation, migration, and invasion through targeting miR-181a-5p/sirtuin 1 (SIRT1) axis. Additionally, DACT3-AS1 was transmitted from CAFs to GC cells mainly via exosomes. Exosomal DACT3-AS1 alleviated xenograft tumor growth. DACT3-AS1 conferred sensitivity of cancer cells to oxaliplatin through SIRT1-mediated ferroptosis both in vitro and in vivo. CONCLUSIONS CAFs-derived exosomal DACT3-AS1 is a suppressive regulator in malignant transformation and oxaliplatin resistance. DACT3-AS1 could be used for diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Xianlin Qu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Longgang Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Weizhu Zhao
- Department of Radiology, Shandong University, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Changlei Liu
- Department of scientific research project, Shandong Excalibur Medical Research. LTD, Jinan, Shandong, China
| | - Jishuang Ding
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Siwei Zhao
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Botao Xu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiang Zhang
- Department of scientific research project, Shandong Excalibur Medical Research. LTD, Jinan, Shandong, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China.
| |
Collapse
|