1
|
Yang R, Guo Y, Yin H. From apoptosis to pyroptosis: A two-decade analysis of spinal cord injury systematic review. Medicine (Baltimore) 2024; 103:e39951. [PMID: 39465728 PMCID: PMC11460935 DOI: 10.1097/md.0000000000039951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Spinal cord injury has a significant impact on patients' physical and mental health, with cell death playing a key role in the pathology. METHODS The Web of Science Core Collection database was searched and screened according to inclusion criteria for publications between January 1, 2000 and December 31, 2023. Bibliometric analysis was conducted using bibliomatrix R-package, CiteSpace, and VOSviewer software. RESULTS A total of 2309 publications were identified, with a stable growth in the first 13 years and accelerated growth in the past decade, indicating an increasing trend in this field. These publications on cell death after spinal cord injury originated from 251 countries/regions. China contributed the most publications, with funding support primarily from China, and Wenzhou Medical University in China being the leading institution with the highest number of publications. Salvatore Cuzzocrea was the most influential author. The research direction in this field after 2000 mainly focused on topics such as apoptosis, autophagy, mesenchymal stem cells, mammalian target of rapamycin pathway, ferroptosis, functional recovery, neuronal regeneration, and NOD-like receptor protein 3.Current hot topics and future research trends revolve around extracellular vesicles including exosomes, extracellular vesicle-mediated mesenchymal stem cells, microRNA, autophagy, NOD-like receptor protein 3 inflammasome-mediated cell pyroptosis, and mechanisms of glial scar formation. CONCLUSION Publications in this field have grown rapidly in the past 2 decades and are expected to keep increasing. Current hot topics include mesenchymal stem cells, apoptosis, autophagy, and ferroptosis. Future research will focus on extracellular vesicle-mediated mesenchymal stem cells, autophagy, inflammasome-mediated cell pyroptosis, and glial scar formation.
Collapse
Affiliation(s)
- Rui Yang
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhuai Guo
- Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Hongna Yin
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Yang Q, Zhong QM, Song MQ, Tong LG, Bai CZ. Exosomes derived from Danshen decoction-pretreated bone marrow mesenchymal stem cells alleviate myocardial infarction via anti-apoptosis and up-regulation of autophagy. Heliyon 2024; 10:e38034. [PMID: 39347388 PMCID: PMC11437974 DOI: 10.1016/j.heliyon.2024.e38034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Cardiomyocyte loss and myocardial fibrosis are major determinants of myocardial infarction (MI) pathological changes. Mesenchymal stem cell (MSC)-derived exosomes (exos) and Danshen decoction (DSY) have been demonstrated to mediate cardiac repair following MI. BM-MSCs exos or BM-MSCsDSY exos were intramuscularly injected into post-MI rats. On the 7th, 14th and 28th days, serum CK, LDH, α-HBDH, ALT, and AST were measured and electrocardiogram changes were monitored to identify cardiac function; Triphenyltetrazolium chloride staining, Hematein&Eosin staining, Masson trichrome staining and Transmission Electron Microscope were adopted to analyze infarct area, cardiac morphology, histopathology, and fibrosis and cardiomyocyte ultrastructure; TUNEL assay, real-time PCR and western blot were performed to detect cardiomyocyte apoptosis and autophagy. As a result, BMMSCsDSY exos are superior to BM-MSCs-exos in improvement of cardiac function, morphology, histopathology and cardiomyocyte ultrastructure, as well as in reduction of infarction area and cardiac fibrosis by inhibiting apoptosis and promoting autophagy of cardiomyocytes.
Collapse
Affiliation(s)
- Qian Yang
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| | - Qi-Ming Zhong
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| | - Mei-Qing Song
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| | - Li-Guo Tong
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| | - Chong-Zhi Bai
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| |
Collapse
|
3
|
Ju D, Dong C. The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury. Neural Regen Res 2024; 19:1751-1758. [PMID: 38103241 PMCID: PMC10960285 DOI: 10.4103/1673-5374.385842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system. Following surgery, the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality. Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord. Consequently, there is a critical need to develop new treatments to promote functional repair after spinal cord injury. Over recent years, there have been several developments in the use of stem cell therapy for the treatment of spinal cord injury. Alongside significant developments in the field of tissue engineering, three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures. This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization. These three-dimensional bioprinting scaffolds could repair damaged neural circuits and had the potential to repair the damaged spinal cord. In this review, we discuss the mechanisms underlying simple stem cell therapy, the application of different types of stem cells for the treatment of spinal cord injury, and the different manufacturing methods for three-dimensional bioprinting scaffolds. In particular, we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Dingyue Ju
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
4
|
Xin GD, Liu XY, Fan XD, Zhao GJ. Exosomes repairment for sciatic nerve injury: a cell-free therapy. Stem Cell Res Ther 2024; 15:214. [PMID: 39020385 PMCID: PMC11256477 DOI: 10.1186/s13287-024-03837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.
Collapse
Affiliation(s)
- Guang-Da Xin
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Xue-Yan Liu
- Cardiology Department, China-Japan Union Hospital of Jilin Universit, Changchun, Jilin Province, 130000, China
| | - Xiao-Di Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Guan-Jie Zhao
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
5
|
Hamidi SH, Etebar N, Rahimzadegan M, Zali A, Roodsari SR, Niknazar S. Mesenchymal stem cells and their derived exosomes in multiple sclerosis disease: from paper to practice. Mol Cell Biochem 2024; 479:1643-1671. [PMID: 38977625 DOI: 10.1007/s11010-024-05051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative, inflammatory, and demyelinating disease of the central nervous system (CNS). Current medicines are not sufficient to control the inflammation and progressive damage to the CNS that is known in MS. These drawbacks highlight the need for novel treatment options. Cell therapy can now be used to treat complex diseases when conventional therapies are ineffective. Mesenchymal stem cells (MSCs) are a diverse group of multipotential non-hematopoietic stromal cells which have immunomodulatory, neurogenesis, and remyelinating capacity. Their advantageous effects mainly rely on paracrine, cell-cell communication and differentiation properties which introduced them as excellent candidates for MS therapy. Exosomes, as one of the MSCs secretomes, have unique properties that make them highly promising candidates for innovative approach in regenerative medicine. This review discusses the therapeutic potential of MSCs and their derived exosomes as a novel treatment for MS, highlighting the differences between these two approaches.
Collapse
Affiliation(s)
- Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences Bachelor of Pharmacy, Bangalore, India
| | - Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Rahmati Roodsari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Alshahrani MY, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Al-Hamdani MM, Deorari M, Abosaoda MK, Hamzah HF, A Mohammed B. A comprehensive insight into the immunomodulatory role of MSCs-derived exosomes (MSC-Exos) through modulating pattern-recognition receptors (PRRs). Cell Biochem Funct 2024; 42:e4029. [PMID: 38773914 DOI: 10.1002/cbf.4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Bahira A Mohammed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
7
|
Chen Y, Li B, Quan J, Li Z, Li Y, Tang Y. Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis. Neurospine 2024; 21:642-655. [PMID: 38955534 PMCID: PMC11224743 DOI: 10.14245/ns.2448038.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated. METHODS By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats. RESULTS The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway's critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis. CONCLUSION In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Bingfa Li
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Quan
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Zhe Li
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Li
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yinbo Tang
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Sintakova K, Romanyuk N. The role of small extracellular vesicles and microRNA as their cargo in the spinal cord injury pathophysiology and therapy. Front Neurosci 2024; 18:1400413. [PMID: 38774785 PMCID: PMC11106386 DOI: 10.3389/fnins.2024.1400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with a complex pathology that affects a significant portion of the population and causes long-term consequences. After primary injury, an inflammatory cascade of secondary injury occurs, followed by neuronal cell death and glial scar formation. Together with the limited regenerative capacity of the central nervous system, these are the main reasons for the poor prognosis after SCI. Despite recent advances, there is still no effective treatment. Promising therapeutic approaches include stem cells transplantation, which has demonstrated neuroprotective and immunomodulatory effects in SCI. This positive effect is thought to be mediated by small extracellular vesicles (sEVs); membrane-bound nanovesicles involved in intercellular communication through transport of functional proteins and RNA molecules. In this review, we summarize the current knowledge about sEVs and microRNA as their cargo as one of the most promising therapeutic approaches for the treatment of SCI. We provide a comprehensive overview of their role in SCI pathophysiology, neuroprotective potential and therapeutic effect.
Collapse
Affiliation(s)
- Kristyna Sintakova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
9
|
Sun Y, Zhao J, Liu Q, Xu Y, Qin Y, He R, Zheng L, Xie Y, Li C, Wu T, Cao Y, Duan C, Lu H, Hu J. Intranasal delivery of small extracellular vesicles from specific subpopulation of mesenchymal stem cells mitigates traumatic spinal cord injury. J Control Release 2024; 369:335-350. [PMID: 38519036 DOI: 10.1016/j.jconrel.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Vascular injury following spinal cord injury (SCI) can significantly exacerbate secondary SCI and result in neurological dysfunction. Strategies targeting angiogenesis have demonstrated potential in enhancing functional recovery post-SCI. In the context of angiogenesis, the CD146+ and CD271+ subpopulations of mesenchymal stem cells (MSCs) have been recognized for their angiogenic capabilities in tissue repair. Small extracellular vesicles (sEVs) derived from MSCs are nanoscale vesicles containing rich bioactive components that play a crucial role in tissue regeneration. However, the precise role of sEVs derived from CD146+CD271+ UCMSCs (CD146+CD271+ UCMSC-sEVs) in SCI remain unclear. In this study, CD146+CD271+ UCMSC-sEVs were non-invasively administered via intranasal delivery, demonstrating a significant capacity to stimulate angiogenesis and improve functional recovery in mice following SCI. Furthermore, in vitro assessments revealed the effective enhancement of migration and tube formation capabilities of the murine brain microvascular endothelial cell line (bEnd.3) by CD146+CD271+UCMSC-sEVs. MicroRNA array analysis confirmed significant enrichment of multiple microRNAs within CD146+CD271+ UCMSC-sEVs. Subsequent in vivo and in vitro experiments demonstrated that CD146+CD271+ UCMSC-sEVs promote enhanced angiogenesis and improved functional recovery mediated by miR-27a-3p. Further mechanistic studies revealed that miR-27a-3p sourced from CD146+CD271+ UCMSC-sEVs enhances migration and tube formation of bEnd.3 cells in vitro by suppressing the expression of Delta Like Canonical Notch Ligand 4 (DLL4), thereby promoting angiogenesis in vivo. Collectively, our results demonstrate that a crucial role of CD146+CD271+ UCMSC-sEVs in inhibiting DLL4 through the transfer of miR-27a-3p, which leads to the promotion of angiogenesis and improved functional recovery after SCI.
Collapse
Affiliation(s)
- Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Quanbo Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Lifu Zheng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China.
| |
Collapse
|
10
|
Yu T, Yang LL, Zhou Y, Wu MF, Jiao JH. Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Res Ther 2024; 15:6. [PMID: 38167108 PMCID: PMC10763489 DOI: 10.1186/s13287-023-03614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Spinal cord injury (SCI) is a catastrophic injury to the central nervous system (CNS) that can lead to sensory and motor dysfunction, which seriously affects patients' quality of life and imposes a major economic burden on society. The pathological process of SCI is divided into primary and secondary injury, and secondary injury is a cascade of amplified responses triggered by the primary injury. Due to the complexity of the pathological mechanisms of SCI, there is no clear and effective treatment strategy in clinical practice. Exosomes, which are extracellular vesicles of endoplasmic origin with a diameter of 30-150 nm, play a critical role in intercellular communication and have become an ideal vehicle for drug delivery. A growing body of evidence suggests that exosomes have great potential for repairing SCI. In this review, we introduce exosome preparation, functions, and administration routes. In addition, we summarize the effect and mechanism by which various exosomes repair SCI and review the efficacy of exosomes in combination with other strategies to repair SCI. Finally, the challenges and prospects of the use of exosomes to repair SCI are described.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Li-Li Yang
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Min-Fei Wu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Jian-Hang Jiao
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
11
|
Wang X, Yang Y, Li W, Hao M, Xu Y. Umbilical mesenchymal stem cell-derived exosomes promote spinal cord functional recovery through the miR-146b/TLR4 -mediated NF-κB p65 signaling pathway in rats. Biochem Biophys Rep 2023; 35:101497. [PMID: 37534324 PMCID: PMC10393557 DOI: 10.1016/j.bbrep.2023.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023] Open
Abstract
Spinal cord injury (SCI) is an incurable central nervous system impairment that lack of efficient treatment. Exosomes derived from mesenchymal stem cells (MSCs) are widely applied in disease treatment. This work aimed to determine the promising therapeutic effects of MSC-derived exosomal miRNA146b on SCI. A rat spinal cord injury (SCI) model and lipopolysaccharide (LPS)-induced PC12 cell model were established. Exosomes were extracted from human umbilical cord mesenchymal stem cells (hUCMSCs). The identification of exosomes was performed by using transmission electronic microscope (TEM) and nanoparticle tracking analysis (NTA). Hematoxylin and eosin (HE) staining and TUNEL assay were performed to assess tissue damage and apoptosis, respectively. ELISA was performed to detect levels of inflammatory cytokines. Cell viability was checked by cell counting kit 8 (CCK-8). Gene expression and protein levels were detected by qPCR and western blotting assay. The interaction between miR-146 b and Toll-like receptor 4 (TLR4) was assessed by luciferase reporter gene assay. The hUCMSC-derived exosomes could notably alleviate the spinal cord injury and cell apoptosis. The exosomal miR-146 b treatment suppressed the release of IL-1 β, IL-6, and TNFα. The miR-146 b suppressed the expression of TLR4, directly interact with the 3'-untranslated region (3'UTR) of TLR4, and inactivated the nuclear factor κB (NF-κB) signaling. The hUCMSCs-derived exosomal miR-146 b protects neurons from spinal cord injury through targeting the TLR4 and inactivating the NF-κB signaling. Our findings supported the application of hUCMSCs-derived exosomal miR-146 b for the protection of SCI.
Collapse
|
12
|
Shulman I, Ageeva T, Kostennikov A, Ogurcov S, Tazetdinova L, Kabdesh I, Rogozhin A, Ganiev I, Rizvanov A, Mukhamedshina Y. Intrathecal Injection of Autologous Mesenchymal Stem-Cell-Derived Extracellular Vesicles in Spinal Cord Injury: A Feasibility Study in Pigs. Int J Mol Sci 2023; 24:ijms24098240. [PMID: 37175946 PMCID: PMC10179045 DOI: 10.3390/ijms24098240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Spinal cord injury (SCI) remains one of the current medical and social problems, as it causes deep disability in patients. The use of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) is one strategy for stimulating the post-traumatic recovery of the structure and function of the spinal cord. Here, we chose an optimal method for obtaining cytochalasin B-induced EVs, including steps with active vortex mixing for 60 s and subsequent filtration to remove nuclei and disorganized inclusions. The therapeutic potential of repeated intrathecal injection of autologous MSC-derived EVs in the subacute period of pig contused SCI was also evaluated for the first time. In this study, we observed the partial restoration of locomotor activity by stimulating the remyelination of axons and timely reperfusion of nervous tissue.
Collapse
Affiliation(s)
- Ilya Shulman
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Tatyana Ageeva
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Kostennikov
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Leysan Tazetdinova
- Department of Morphology and General Pathology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilyas Kabdesh
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Rogozhin
- Department of Neurology, Kazan State Medical Academy-Branch Campus of the Federal State Budgetary Educational Institution of Father Professional Education, Russian Medical Academy of Continuous Professional Education, 420012 Kazan, Russia
| | - Ilnur Ganiev
- Scientific and Educational Center of Pharmacy, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|