1
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Mohammed MJ, Al-mizraqchi AS, Ibrahim SM. Oral Findings, Salivary Copper, Magnesium, and Leptin in Type II Diabetic Patients in Relation to Oral Candida Species. Int J Microbiol 2024; 2024:8177437. [PMID: 39071038 PMCID: PMC11281854 DOI: 10.1155/2024/8177437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Background Type 2 diabetes is a condition in which the body becomes resistant to the effects of insulin, leading to reduced insulin production in the pancreas. It has genetic- and family-related risk factors that cannot be changed, along with modifiable lifestyle factors. The precise genetic causes of type 2 diabetes are still unknown. However, individuals can potentially slow or stop the progression of the condition by making dietary adjustments and increasing physical activity levels. Material and Methods. Forty-five type II diabetic patients in the study included participants between 40 and 60 years old, with a minimum duration of one year, as well as 45 healthy control subjects who were matched in terms of age and sex, and had no underlying systemic diseases. Oral examination is done for the symptoms including burning sensation, candidiasis, and a reduction in the production of saliva. The rate of saliva flow (in milliliters per minute) was measured in samples of saliva that were not stimulated. The salivary trace elements and levels of adipocytokines were evaluated using colorimetric and Ethylenediaminetetraacetic acid (ELISA) testing. The quantification of Candida colony numbers, an enrichment and culture approach, was used to achieve a concentration of 100,000 colony-forming units per milliliter (CFU/ml). The ShowNovo WG1 halimeter was used to measure volatile sulfur compounds in breath. The salivary glucose oxidase assay was conducted using a colorimetric technique, while the determination of trace elements was also performed using a colorimetric assay method. Result The diabetic group exhibited a significant increase in the number of Candida spp colonies due to elevated levels of glucose in the saliva (p > 0.05). However, the variables being examined, such as body mass index (BMI), burning mouth syndrome (BMS), salivary flow rate (SFR), salivary leptin, salivary copper, and salivary magnesium, did not exhibit any significant variations in quantities between the diabetic and healthy groups (p > 0.05). Conclusion The data collected in this research aid in the creation of a preventative program for oral fungal infections in individuals with type 2 diabetes. The program utilizes saliva and its constituents.
Collapse
Affiliation(s)
- Mohammed Jasim Mohammed
- Department of Oral MedicineCollege of DentistryUniversity of Baghdad, Bab-Almoadham, P.O. Box 1417, Baghdad, Iraq
| | - Abbas S. Al-mizraqchi
- Department of Basic ScienceCollege of DentistryUniversity of Baghdad, Bab-Almoadham, P.O. Box 1417, Baghdad, Iraq
| | - Salah M. Ibrahim
- Department of Oral SurgeryCollege of DentistryKufa University, Kufa, Iraq
| |
Collapse
|
3
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
4
|
Liu L, Fan H, Li L, Fan Y. Acarbose reduces Pseudomonas aeruginosa respiratory tract infection in type 2 diabetic mice. Respir Res 2023; 24:312. [PMID: 38098038 PMCID: PMC10722695 DOI: 10.1186/s12931-023-02619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is widely prevalent worldwide, and respiratory tract infections (RTIs) have become the primary cause of death for T2DM patients who develop concurrent infections. Among these, Pseudomonas aeruginosa infection has been found to exhibit a high mortality rate and poor prognosis and is frequently observed in bacterial infections that are concurrent with COVID-19. Studies have suggested that acarbose can be used to treat T2DM and reduce inflammation. Our objective was to explore the effect of acarbose on P. aeruginosa RTI in T2DM individuals and elucidate its underlying mechanism. METHODS High-fat diet (HFD) induction and P. aeruginosa inhalation were used to establish a RTI model in T2DM mice. The effect and mechanism of acarbose administered by gavage on P. aeruginosa RTI were investigated in T2DM and nondiabetic mice using survival curves, pathological examination, and transcriptomics. RESULTS We found that P. aeruginosa RTI was more severe in T2DM mice than in nondiabetic individuals, which could be attributed to the activation of the NF-κB and TREM-1 signaling pathways. When acarbose alleviated P. aeruginosa RTI in T2DM mice, both HIF-1α and NF-κB signaling pathways were inhibited. Furthermore, inhibition of the calcium ion signaling pathway and NF-κB signaling pathway contributed to the attenuation of P. aeruginosa RTI by acarbose in nondiabetic mice. CONCLUSIONS This study confirmed the attenuating effect of acarbose on P. aeruginosa RTIs in T2DM and nondiabetic mice and investigated its mechanism, providing novel support for its clinical application in related diseases.
Collapse
Affiliation(s)
- Lin Liu
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, People's Republic of China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiyang Fan
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, People's Republic of China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, People's Republic of China.
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yunping Fan
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China.
| |
Collapse
|
5
|
Ho KM, Morgan DJ, Johnstone M, Edibam C. Biological age is superior to chronological age in predicting hospital mortality of the critically ill. Intern Emerg Med 2023; 18:2019-2028. [PMID: 37635161 PMCID: PMC10543822 DOI: 10.1007/s11739-023-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Biological age is increasingly recognized as being more accurate than chronological age in determining chronic health outcomes. This study assessed whether biological age, assessed on intensive care unit (ICU) admission, can predict hospital mortality. This retrospective cohort study, conducted in a tertiary multidisciplinary ICU in Western Australia, used the Levine PhenoAge model to estimate each patient's biological age (also called PhenoAge). Each patient's PhenoAge was calibrated to generate a regression residual which was equivalent to biological age unexplained by chronological age in the local context. PhenoAgeAccel was a dichotomized measure of the residuals, and its presence suggested that one was biologically older than the corresponding chronological age. Of the 2950 critically ill adult patients analyzed, 291 died (9.9%) before hospital discharge. Both PhenoAge and its residuals (after regressing on chronological age) had a significantly better ability to differentiate between hospital survivors and non-survivors than chronological age (area under the receiver-operating-characteristic curve 0.648 and 0.654 vs. 0.547 respectively). Being phenotypically older than one's chronological age was associated with an increased risk of mortality (PhenoAgeAccel hazard ratio [HR] 1.997, 95% confidence interval [CI] 1.568-2.542; p = 0.001) in a dose-related fashion and did not reach a plateau until at least a 20-year gap. This adverse association remained significant (adjusted HR 1.386, 95% CI 1.077-1.784; p = 0.011) after adjusted for severity of acute illness and comorbidities. PhenoAgeAccel was more prevalent among those with pre-existing chronic cardiovascular disease, end-stage renal failure, cirrhosis, immune disease, diabetes mellitus, or those treated with immunosuppressive therapy. Being phenotypically older than one's chronological age was more common among those with comorbidities, and this was associated with an increased risk of mortality in a dose-related fashion in the critically ill that was not fully explained by comorbidities and severity of acute illness.
Collapse
Affiliation(s)
- Kwok M Ho
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, WA, Robin Warren Drive, 6150, Australia.
- University of Western Australia, Perth, WA, 6009, Australia.
- Murdoch University, Perth, WA, 6150, Australia.
| | - David J Morgan
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, WA, Robin Warren Drive, 6150, Australia
| | - Mason Johnstone
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, WA, Robin Warren Drive, 6150, Australia
| | - Cyrus Edibam
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, WA, Robin Warren Drive, 6150, Australia
| |
Collapse
|