1
|
Cai Q, Lan H, Yi D, Xian B, Zidan L, Li J, Liao Z. Flow cytometry in acute myeloid leukemia and detection of minimal residual disease. Clin Chim Acta 2025; 564:119945. [PMID: 39209245 DOI: 10.1016/j.cca.2024.119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of acute leukemia (AL), belonging to malignant tumors of the hematopoietic system with the characteristics of rapid disease development, control with extreme difficulties, easy recurrence, poor prognosis, and incidence rate increasing with age. The traditionally diagnostic standard of French American British (FAB), being based on the morphological examination with high human subjectivity, can no longer meet the demand of clinical diagnosis and treatment of AML. Requirements of objective accuracy and low-dose sample, have become the indispensable method for AML diagnosis and monitoring prognosis. Flow cytometry is a modern technology that can quickly and accurately detect the series, antigen distribution, differentiation stage of AML cells, minimal residual lesions after AML therapy, so as to provide the great significance in guiding clinical diagnosis, hierarchical treatment, and prognosis judgement. This article will systematically elaborate on the application of flow cytometry in the diagnosis and classification of AML, and the detection of minimal residual lesions, thereby providing reference significance for dynamic monitoring and prognostic observation of AML with different immune subtypes of FAB.
Collapse
Affiliation(s)
- Qihui Cai
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Haiqiang Lan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Deng Yi
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Bojun Xian
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Luo Zidan
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Jianqiao Li
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Zhaohong Liao
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
DE Pinho Pessoa FMC, Nogueira BMD, Machado CB, Barreto IV, DA Costa Machado AK, Gadelha RB, DE Sousa Oliveira D, Ribeiro RM, Silva FAC, Gurgel LA, Medeiros JC, DA Rocha Maciel A, Lopes GS, Vieira RPG, DE Moraes Filho MO, DE Moraes MEA, Khayat AS, Moreira-Nunes CA. Molecular and Clinical Insights in the Increasing Detection of BCR::ABL1 p190+ in Adult Acute Myeloid Leukemia Patients. In Vivo 2024; 38:2016-2023. [PMID: 38936913 PMCID: PMC11215616 DOI: 10.21873/invivo.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Acute myeloid leukemia (AML) is a myeloproliferative neoplasm marked by abnormal clonal expansion of hematopoietic progenitor cells, displaying karyotypic aberrations and genetic mutations as prognostic indicators. The World Health Organization (WHO) and the European LeukemiaNet guidelines categorize BCR::ABL1 p190+ AML as high risk. This study explored the identification of the increased incidence of BCR::ABL1 p190+ in our AML population. PATIENTS AND METHODS This study included 96 AML patients stratified according to WHO guidelines. Subsequently, patients were screened for genetic abnormalities, such as BCR::ABL1 p 190+, PML::RARA, RUNX1::RUNX1T1, and CBFB::MYH11 by quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis. RESULTS Among 96 AML patients, 36 displayed BCR::ABL1 p190+, overcoming the expected global incidence. Age variations (19 to 78 years) showed no significant laboratory differences between BCR::ABL1 p190+ and non-BCR::ABL p190+ cases. The overall survival analysis revealed no statistically significant differences among the patients (p=0.786). CONCLUSION The analyzed population presented a higher frequency of BCR::ABL1 p190+ detection in adult AML patients when compared to what is described in the worldwide literature. Therefore, more studies are needed to establish the reason why this incidence is higher and what the best treatment approach should be in these cases.
Collapse
Affiliation(s)
- Flávia Melo Cunha DE Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Maria Dias Nogueira
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Anna Karolyna DA Costa Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renan Brito Gadelha
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Deivide DE Sousa Oliveira
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Hematology, Fortaleza General Hospital (HGF), Fortaleza, CE, Brazil
| | | | | | - Lívia Andrade Gurgel
- Department of Hematology, Fortaleza General Hospital (HGF), Fortaleza, CE, Brazil
| | - Jaira Costa Medeiros
- Department of Hematology, Fortaleza General Hospital (HGF), Fortaleza, CE, Brazil
| | | | | | | | - Manoel Odorico DE Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral DE Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil;
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, PA, Brazil
- Clementino Fraga Group, Central Unity, Molecular Biology Laboratory, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Lu M, Yu X, Hu J, Wang J, Wang T. Cytotoxic T-lymphocytes in acute myeloid leukemia: Monitoring prognosis and guiding treatment choice. J Gene Med 2024; 26:e3587. [PMID: 37697474 DOI: 10.1002/jgm.3587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Cytotoxic T-lymphocyte (CTL)-mediated therapy has become the central theme of cancer immunotherapy. The present study emphasized the role of CTLs in acute myeloid leukemia (AML) and aimed to understand the role of CTLs cytogenetic markers in monitoring AML prognostic outcomes and clinical treatment responses. METHODS Seurat was employed to analyze single-cell RNA sequencing data in GSE116256. CellChat was used to detect cell-cell interactions to determine the central role of CTLs. The marker genes of CTLs were extracted and randomForestSRC was employed to construct a random forest model. The prognosis, immune checkpoint expression, immune cell infiltration, immunotherapy response and drug sensitivity of AML patients were evaluated according to the model. RESULTS Seven types of cellular components of AML were identified in GSE116256, and CTLs radiated the most interactions with other cell types. Random forest analysis screened out six marker genes for construction of the model. The risk score calculated according to the model was positively correlated with immune score, immune cell infiltration, expression of multiple immune checkpoints and immune effect pathway. The response rate of immunotherapy was significantly higher and more sensitive to 14 drugs in high-risk samples than in low-risk samples, whereas low-risk patients showed a higher sensitivity to six drugs. CONCLUSIONS The present study emphasized the central role of CTLs in cell communication and established a random forest regression model based on its cytogenetic markers, which helps to stratify the prognosis of AML, promotes the understanding of the phenotype of AML and may also guide the treatment choice of AML patients, which contributed to stratification of AML prognosis, promoted understanding of the phenotype of AML and may guide treatment selection in patients with AML.
Collapse
Affiliation(s)
- Mengjiao Lu
- Department of Clinical Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| | - Xialei Yu
- Department of Obstetrics, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| | - Jingyan Hu
- Department of Clinical Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| | - Jiajing Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| | - Taozuo Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| |
Collapse
|
4
|
Bashi MA, Ad'hiah AH. Interleukin-37 gene expression is down-regulated in patients with acute myeloid leukemia and shown to be affected by CD14 and HLA-DR immunophenotypes. Cytokine 2023; 171:156368. [PMID: 37716188 DOI: 10.1016/j.cyto.2023.156368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Recent evidence has indicated that interleukin 37 (IL-37) shows down-regulated expression in patients with acute myeloid leukemia (AML), but its association with immunophenotypic markers has not been explored. In the current study, IL37 mRNA expression was analyzed in the peripheral blood of 131 AML patients and 100 controls using the 2-ΔΔCt method (fold change), which was based on the principles of quantitative real-time polymerase chain reaction. AML patients were characterized in terms of gender, therapy, fms-like tyrosine kinase 3/internal tandem duplication (FLT3/ITD) and nucleophosmin 1 (NPM1) mutations, French-American-British classification (FAB), World Health Organization (WHO) classification, and immunophenotypes of 25 cytoplasmic and surface markers. IL37 mRNA expression was given as median and interquartile range. Low expression of IL37 mRNA (0.273 [0.062-0.456]) was found in AML patients. This reduced expression was more pronounced in females than in males but the difference was significant before the Bonferroni correction (0.196 [0.045-0.411] vs. 0.4 [0.153-0.466]; probability [p] = 0.008; corrected p = 0.064). In addition, the FAB M4 type (0.109 [0.031-0.269]) and the WHO PML-RARA type (0.171 [0.061-0.482]) had the lowest expression of IL37 mRNA among the other types. For immunophenotypes, only two significant differences were found. First, CD14-positive patients showed a lower level of expression than CD14-negative patients (0.146 [0.033-0.413] vs. 0.323 [0.108-0.468]; p = 0.02). Second, HLA-DR-positive patients showed a higher level of expression than HLA-DR-negative patients (0.325 [0.163-0.474] vs. 0.214 [0.045-0.42]; p = 0.04). However, the corrected p-value was not significant in both cases (p > 0.05). In conclusion, IL37 mRNA expression was down-regulated in AML patients, especially females, and those with the FAB M4 type and the WHO PML-RARA type. This expression may be affected by the immunophenotypic markers CD14 and HLA-DR.
Collapse
Affiliation(s)
- Mustafa A Bashi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
5
|
Mesuraca M, Nisticò C, Chiarella E. Editorial to the Special Issue "Recent Advances in Biochemical Mechanisms of Acute Myeloid Leukemia". Biomedicines 2023; 11:biomedicines11051339. [PMID: 37239010 DOI: 10.3390/biomedicines11051339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal malignant disorder of myeloid progenitor cells characterized by uncontrolled proliferation, dysregulation in the differentiation program, and inhibition of apoptosis mechanisms [...].
Collapse
Affiliation(s)
- Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Clelia Nisticò
- Candiolo Cancer Institute, FPO-IRCCS and Department of Oncology, University of Torino, Strada Provinciale 142, km 3.95, Candiolo, 10060 Torino, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100 Catanzaro, Italy
| |
Collapse
|