1
|
Liu BM, Hayes AW. Mechanisms and Assessment of Genotoxicity of Metallic Engineered Nanomaterials in the Human Environment. Biomedicines 2024; 12:2401. [PMID: 39457713 PMCID: PMC11504605 DOI: 10.3390/biomedicines12102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Engineered nanomaterials (ENMs) have a broad array of applications in agriculture, engineering, manufacturing, and medicine. Decades of toxicology research have demonstrated that ENMs can cause genotoxic effects on bacteria, mammalian cells, and animals. Some metallic ENMs (MENMs), e.g., metal or metal oxide nanoparticles TiO2 and CuO, induce genotoxicity via direct DNA damage and/or reactive oxygen species-mediated indirect DNA damage. There are various physical features of MENMs that may play an important role in promoting their genotoxicity, for example, size and chemical composition. For a valid genotoxicity assessment of MENMs, general considerations should be given to various factors, including, but not limited to, NM characterization, sample preparation, dosing selection, NM cellular uptake, and metabolic activation. The recommended in vitro genotoxicity assays of MENMs include hprt gene mutation assay, chromosomal aberration assay, and micronucleus assay. However, there are still knowledge gaps in understanding the mechanisms underlying the genotoxicity of MENMs. There are also a variety of challenges in the utilization and interpretation of the genotoxicity assessment assays of MENMs. In this review article, we provide mechanistic insights into the genotoxicity of MENMs in the human environment. We review advances in applying new endpoints, biomarkers, and methods to the genotoxicity assessments of MENMs. The guidance of the United States, the United Kingdom, and the European Union on the genotoxicity assessments of MENMs is also discussed.
Collapse
Affiliation(s)
- Benjamin M. Liu
- Division of Pathology and Laboratory Medicine, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- The District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| | - A. Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL 33612, USA
- Institute for Integrated Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Zhao C, Wang Y, Chen C, Zhu Y, Miao Z, Mou X, Yuan W, Zhang Z, Li K, Chen M, Liang W, Zhang M, Miao W, Dong Y, Deng D, Wu J, Ke B, Bao R, Geng J. Direct and Continuous Monitoring of Multicomponent Antibiotic Gentamicin in Blood at Single-Molecule Resolution. ACS NANO 2024; 18:9137-9149. [PMID: 38470845 DOI: 10.1021/acsnano.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Point-of-care monitoring of small molecules in biofluids is crucial for clinical diagnosis and treatment. However, the inherent low degree of recognition of small molecules and the complex composition of biofluids present significant obstacles for current detection technologies. Although nanopore sensing excels in the analysis of small molecules, the direct detection of small molecules in complex biofluids remains a challenge. In this study, we present a method for sensing the small molecule drug gentamicin in whole blood based on the mechanosensitive channel of small conductance in Pseudomonas aeruginosa (PaMscS) nanopore. PaMscS can directly detect gentamicin and distinguish its main components with only a monomethyl difference. The 'molecular sieve' structure of PaMscS enables the direct measurement of gentamicin in human whole blood within 10 min. Furthermore, a continuous monitoring device constructed based on PaMscS achieved continuous monitoring of gentamicin in live rats for approximately 2.5 h without blood consumption, while the drug components can be analyzed in situ. This approach enables rapid and convenient drug monitoring with single-molecule level resolution, which can significantly lower the threshold for drug concentration monitoring and promote more efficient drug use. Moreover, this work also lays the foundation for the future development of continuous monitoring technology with single-molecule level resolution in the living body.
Collapse
Affiliation(s)
- Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Chen Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Yibo Zhu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuang Miao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Mou
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weidan Yuan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihao Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Weibo Liang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Ming Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenqian Miao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuhan Dong
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Dong Deng
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Jianping Wu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| |
Collapse
|
3
|
Smith A, Larsen TRB, Zimmerman HK, Virolainen SJ, Meyer JJ, Keranen Burden LM, Burden DL. Design and Construction of a Multi-Tiered Minimal Actin Cortex for Structural Support in Lipid Bilayer Applications. ACS APPLIED BIO MATERIALS 2024; 7:1936-1946. [PMID: 38427377 PMCID: PMC10951949 DOI: 10.1021/acsabm.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Artificial lipid bilayers have revolutionized biochemical and biophysical research by providing a versatile interface to study aspects of cell membranes and membrane-bound processes in a controlled environment. Artificial bilayers also play a central role in numerous biosensing applications, form the foundational interface for liposomal drug delivery, and provide a vital structure for the development of synthetic cells. But unlike the envelope in many living cells, artificial bilayers can be mechanically fragile. Here, we develop prototype scaffolds for artificial bilayers made from multiple chemically linked tiers of actin filaments that can be bonded to lipid headgroups. We call the interlinked and layered assembly a multiple minimal actin cortex (multi-MAC). Construction of multi-MACs has the potential to significantly increase the bilayer's resistance to applied stress while retaining many desirable physical and chemical properties that are characteristic of lipid bilayers. Furthermore, the linking chemistry of multi-MACs is generalizable and can be applied almost anywhere lipid bilayers are important. This work describes a filament-by-filament approach to multi-MAC assembly that produces distinct 2D and 3D architectures. The nature of the structure depends on a combination of the underlying chemical conditions. Using fluorescence imaging techniques in model planar bilayers, we explore how multi-MACs vary with electrostatic charge, assembly time, ionic strength, and type of chemical linker. We also assess how the presence of a multi-MAC alters the underlying lateral diffusion of lipids and investigate the ability of multi-MACs to withstand exposure to shear stress.
Collapse
Affiliation(s)
- Amanda
J. Smith
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Theodore R. B. Larsen
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Harmony K. Zimmerman
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Samuel J. Virolainen
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Joshua J. Meyer
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Lisa M. Keranen Burden
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Daniel L. Burden
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| |
Collapse
|