1
|
Cantor J. Desmosine: The Rationale for Its Use as a Biomarker of Therapeutic Efficacy in the Treatment of Pulmonary Emphysema. Diagnostics (Basel) 2025; 15:578. [PMID: 40075825 PMCID: PMC11898526 DOI: 10.3390/diagnostics15050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Desmosine and isodesmosine (DID) are elastin-specific crosslinking amino acids that play a critical role in maintaining the structural integrity of elastic fibers, and their levels in body fluids may serve as biomarkers for alveolar wall injury. To support this concept, we present studies demonstrating the use of DID to detect elastic fiber damage that reflects distention and the rupture of airspaces. The emergence of airspace enlargement may be modeled by a percolation network describing the effect of changing proportions of intact and weak elastic fibers on the transmission of mechanical forces in the lung. Following the unraveling and fragmentation of weakened elastic fibers, the release of DID may correlate with an increasing alveolar diameter and provide an endpoint for clinical trials of novel agents designed to treat pulmonary emphysema. The limitations of the DID measurements related to specificity and reproducibility are also addressed, particularly regarding sample source and analytical techniques. Standardizing protocols to isolate and quantify DID may increase the use of this biomarker for the early detection of alveolar wall injury, which permits timely therapeutic intervention.
Collapse
Affiliation(s)
- Jerome Cantor
- School of Pharmacy and Allied Health Sciences, St John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
2
|
Cantor J. The Potential Role of Cigarette Smoke, Elastic Fibers, and Secondary Lung Injury in the Transition of Pulmonary Emphysema to Combined Pulmonary Fibrosis and Emphysema. Int J Mol Sci 2024; 25:11793. [PMID: 39519344 PMCID: PMC11546355 DOI: 10.3390/ijms252111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a distinct syndrome associated with heavy smoking. The fibrotic component of the disease is generally believed to be superimposed on previously existing pulmonary emphysema, but the mechanisms responsible for these changes remain poorly understood. To better understand the pathogenesis of CPFE, we performed a series of experiments that focused on the relationships between lung elastic fibers, cigarette smoke, and secondary lung injury. The results indicate that even brief smoke exposure predisposes the lung to additional forms of lung injury that may cause alveolar wall fibrosis. The proinflammatory activity of smoke-induced structural alterations in elastic fibers may contribute to this process by enhancing secondary lung inflammation, including acute exacerbations of chronic obstructive pulmonary disease. Furthermore, the levels of the unique elastin crosslinks, desmosine and isodesmosine, in blood, urine, and sputum may serve as biomarkers for the transition from pulmonary emphysema to interstitial fibrosis. While the long-term effects of these inflammatory reactions were not examined, the current studies provide insight into the potential relationships between elastic fiber injury, cigarette smoke, and secondary lung injury. Determining the mechanisms involved in combined pulmonary emphysema and fibrosis and developing a sensitive biomarker for this type of lung injury may permit timely therapeutic intervention that could mitigate the high risk of respiratory failure associated with this condition.
Collapse
Affiliation(s)
- Jerome Cantor
- School of Pharmacy and Allied Health Sciences, St John's University, Queens, NY 11439, USA
| |
Collapse
|
3
|
Pimentel VD, Acha BT, Gomes GF, Macedo de Sousa Cardoso JL, Sena da Costa CL, Carvalho Batista NJ, Rufino Arcanjo DD, Alves WDS, de Assis Oliveira F. Anti-inflammatory effect of Anadenanthera colubrina var. cebil (Griseb.) Altschul in experimental elastase-induced pulmonary emphysema in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118216. [PMID: 38642622 DOI: 10.1016/j.jep.2024.118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants have shown promise in the search for new treatments of pulmonary emphysema. Anadenanthera colubrina, a species native to the Caatinga biome in northeastern Brazil, is widely recognized and traditionally employed in the treatment of pulmonary diseases. Many studies corroborate popular knowledge about the medicinal applications of A. colubrina, which has demonstrated a remarkable variety of pharmacological properties, however, its anti-inflammatory and antioxidant properties are highlighted. AIM OF THE STUDY The objective of this study was to investigate the anti-inflammatory potential of the crude hydroethanolic extract of A. colubrina var. cebil (Griseb.) Altschul on pulmonary emphysema in rats as well as to determine its potential genotoxic and cytotoxic effects using the micronucleus assay. MATERIALS AND METHODS The stem bark of the plant was collected in Pimenteiras-PI and sample was extracted by maceration using 70% ethanol. A portion of the extract underwent phytochemical analyses using TLC and HPLC. In this study, 8-week-old, male Wistar rats weighing approximately ±200 g was utilized following approval by local ethics committee for animal experimentation (No. 718/2022). Pulmonary emphysema was induced through orotracheal instillation of elastase, and treatment with A. colubrina extract or dexamethasone (positive control) concomitantly during induction. Twenty-eight days after the initiation of the protocol, plasma was used for cytokine measurement. Bronchoalveolar lavage (BAL) was used for leukocyte count. After euthanasia, lung samples were processed for histological analysis and quantification of oxidative stress markers. The micronucleus test was performed by evaluating the number of polychromatic erythrocytes (PCE) with micronuclei (MNPCE) to verify potential genotoxic effects of A. colubrina. A differential count of PCE and normochromatic erythrocytes (NCE) was performed to verify the potential cytotoxicity of the extract. Parametric data were subjected to normality analysis and subsequently to analysis of variance and Tukey or Dunnett post-test, non-parametric data were treated using the Kruskal-Wallis test with Dunn's post-test for unpaired samples. P value < 0.05 were considered significant. RESULTS The A. colubrina extract did not show a significant increase in the number of MNPCE (p > 0.05), demonstrating low genotoxicity. No changes were observed in the PCE/NCE ratio of treated animals, compared with the vehicle, suggesting low cytotoxic potential of the extract. A significant reduction (p < 0.05) in neutrophilic inflammation was observed in the lungs of rats treated with the extract, evidenced by presence of these cells in both the tissue and BAL. The extract also demonstrated pulmonary antioxidant activity, with a significant decrease (p < 0.05) in myeloperoxidase, malondialdehyde, and nitrite levels. TNFα, IL-1β, and IL-6 levels, as well as alveolar damage, were significantly reduced in animals treated with A. colubrina extract. Phytochemical analyses identified the presence of phenolic compounds and hydrolysable tannins in the A. colubrina extract. CONCLUSIONS The findings of this study highlights the safety of the hydroethanolic extract of Anadenanthera colubrina, and demonstrates its potential as a therapeutic approach in the treatment of emphysema. The observed properties of this medicinal plant provide an optimistic outlook in the development of therapies for the treatment of pulmonary emphysema.
Collapse
Affiliation(s)
- Vinicius Duarte Pimentel
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil.
| | - Boris Timah Acha
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Gabriel Felicio Gomes
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - João Luiz Macedo de Sousa Cardoso
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Charllyton Luis Sena da Costa
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Nelson Jorge Carvalho Batista
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Daniel Dias Rufino Arcanjo
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Wellington Dos Santos Alves
- Laboratory of Natural Products and Bioprospection (LabPNBio), State University of Piauí, Teresina, Piauí, Brazil
| | - Francisco de Assis Oliveira
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
4
|
Wei Y, Yang L, Wang Q. Analysis of clinical characteristics and prognosis of lung cancer patients with CPFE or COPD: a retrospective study. BMC Pulm Med 2024; 24:274. [PMID: 38851701 PMCID: PMC11161937 DOI: 10.1186/s12890-024-03088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Lung cancer (LC) commonly occurs in patients with combined pulmonary fibrosis and emphysema (CPFE) and chronic obstructive pulmonary disease (COPD), but comparative research is limited. This study examines clinical characteristics, treatments, and prognosis in LC patients with CPFE or COPD. METHODS The retrospective study involved 75 lung cancer patients with CPFE and 182 with COPD. It analyzed clinical features, tumor pathology, pulmonary function, laboratory parameters, and treatment responses. RESULTS Notable differences were found between the CPFE + LC and COPD + LC groups. Both groups were mostly elderly, male smokers. The CPFE + LC group had higher BMI and more adenocarcinoma and squamous cell carcinoma, while COPD + LC had predominantly squamous cell carcinoma. CPFE + LC tumors were mostly in the lower lobes; COPD + LC's were in the upper lobes. The CPFE + LC group showed higher tumor metastasis rates, more paraseptal emphysema, and elevated levels of TG, CEA, NSE, and Killer T Cells. In advanced stages (IIIB-IV), the CPFE + LC group receiving first-line treatment had shorter median progression-free survival (PFS) and a higher risk of progression or death than the COPD + LC group, regardless of whether it was non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC). No significant PFS difference was found within CPFE + LC between chemotherapy and immunotherapy, nor in immune-related adverse events between groups, with interstitial pneumonia being common. CONCLUSION This study emphasizes distinct lung cancer characteristics in CPFE or COPD patients, highlighting the need for tailored diagnostic and treatment approaches. It advocates for further research to improve care for this high-risk group.
Collapse
Affiliation(s)
- Yuying Wei
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79, Qingchun Road, Hangzhou, Zhejiang, China
| | - Liuqing Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79, Qingchun Road, Hangzhou, Zhejiang, China
| | - Qing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79, Qingchun Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Ceasovschih A, Șorodoc V, Covantsev S, Balta A, Uzokov J, Kaiser SE, Almaghraby A, Lionte C, Stătescu C, Sascău RA, Onofrei V, Haliga RE, Stoica A, Bologa C, Ailoaei Ș, Şener YZ, Kounis NG, Șorodoc L. Electrocardiogram Features in Non-Cardiac Diseases: From Mechanisms to Practical Aspects. J Multidiscip Healthc 2024; 17:1695-1719. [PMID: 38659633 PMCID: PMC11041971 DOI: 10.2147/jmdh.s445549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Despite the noteworthy advancements and the introduction of new technologies in diagnostic tools for cardiovascular disorders, the electrocardiogram (ECG) remains a reliable, easily accessible, and affordable tool to use. In addition to its crucial role in cardiac emergencies, ECG can be considered a very useful ancillary tool for the diagnosis of many non-cardiac diseases as well. In this narrative review, we aimed to explore the potential contributions of ECG for the diagnosis of non-cardiac diseases such as stroke, migraine, pancreatitis, Kounis syndrome, hypothermia, esophageal disorders, pulmonary embolism, pulmonary diseases, electrolyte disturbances, anemia, coronavirus disease 2019, different intoxications and pregnancy.
Collapse
Affiliation(s)
- Alexandr Ceasovschih
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Victorița Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Serghei Covantsev
- Department of Research and Clinical Development, Botkin Hospital, Moscow, Russia
| | - Anastasia Balta
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Jamol Uzokov
- Department of Cardiology, Republican Specialized Scientific Practical Medical Center of Therapy and Medical Rehabilitation, Tashkent, Uzbekistan
| | - Sergio E Kaiser
- Discipline of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Abdallah Almaghraby
- Department of Cardiology, Ibrahim Bin Hamad Obaidallah Hospital, Ras Al Khaimah, United Arab Emirates
| | - Cătălina Lionte
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Cristian Stătescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Radu A Sascău
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Viviana Onofrei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Raluca Ecaterina Haliga
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Alexandra Stoica
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Cristina Bologa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| | - Ștefan Ailoaei
- Department of Cardiology, “Prof. Dr. George I.M. Georgescu” Cardiovascular Diseases Institute, Iasi, Romania
| | - Yusuf Ziya Şener
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkiye
| | - Nicholas G Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, Patras, Greece
| | - Laurențiu Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- 2nd Internal Medicine Department, “Sf. Spiridon” Clinical Emergency Hospital, Iasi, Romania
| |
Collapse
|