1
|
Liu M, Zhou X, Wang Y, Zhao W, Zhao X, Li L, Xue F, Zhang Q, Yan J, Su Y, Zeng W. A Strategy Involving Microporous Microneedles Integrated with CAR-TREM2-Macrophages for Scar Management by Regulating Fibrotic Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406153. [PMID: 39313983 DOI: 10.1002/adma.202406153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Indexed: 09/25/2024]
Abstract
Dipeptidyl peptidase 4 (DPP4) positive fibroblasts play a pivotal role in scar development following skin injury. Heterogeneous vascular endothelial cells (ECs) within scarred areas retain the capacity to drive tissue regeneration and repair. Simultaneously, TREM2 macrophages play a crucial role in the progression and resolution of fibrosis by engaging in mutual regulation with ECs. However, effective strategies to inhibit scar formation through multi-factor regulation of the scar microenvironment remain a challenge. Here, CAR-TREM2-macrophages (CAR-TREM2-Ms) capable of targeting DPP4+ fibroblasts and modulating ECs subtype within the scar microenvironment are engineered to effectively prevent scarring. Hydrogel microporous microneedles (mMNs) are employed to deliver CAR-TREM2-Ms, which can effectively alleviate scar. Single-cell transcriptome sequencing (scRNA-seq) analysis reveals that CAR-TREM2-Ms can modify ECs fibrotic phenotype and regulate fibrosis by suppressing the profibrotic gene leucine-rich-alpha-2-glycoprotein 1 (Lrg1). In vitro experiments further demonstrate that CAR-TREM2-Ms improve the scar microenvironment by phagocytosing DPP4+ fibroblasts and suppressing TGFβ secretion. This, in turn, inhibits the phenotypic conversion of LRG1 ECs and provides multifactorial way of alleviating scars. This study uncovers the evidence that mMNs attached to CAR-TREM2-Ms may exert vital influences on skin scarring through the regulation of the skin scar microenvironment, providing a promising approach for treating posttraumatic scarring.
Collapse
Affiliation(s)
- Min Liu
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| | - Xin Zhou
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| | - Yu Wang
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
- Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wenyan Zhao
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| | - Xingli Zhao
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| | - Lang Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| | - Qiao Zhang
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
- Department of Pain and Rehabilitation, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| | - Juan Yan
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yang Su
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| | - Wen Zeng
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
- Jinfeng Laboratory, Chongqing, 401329, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, China
| |
Collapse
|
2
|
Yan Y, Quan H, Guo C, Qin Z, Quan T. Alterations of Matrisome Gene Expression in Naturally Aged and Photoaged Human Skin In Vivo. Biomolecules 2024; 14:900. [PMID: 39199288 PMCID: PMC11352887 DOI: 10.3390/biom14080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The main component of human skin is a collagen-rich extracellular matrix (ECM), known as the matrisome. The matrisome is essential for maintaining the structural integrity and mechanical properties of the skin. Recently, we reported notable decreases in matrisome proteins in natural aging and photoaging human skin. This study aims to investigate the mRNA expression of the core matrisome proteins in human skin, comparing young versus aged and sun-protected versus sun-exposed skin by quantitative real-time PCR and immunostaining. Our findings reveal a notable decrease in core matrisome transcription in aged skin. The mRNA expression of the core matrisome, such as collagen 1A1 (COL1A1), decorin, and dermatopontin, is significantly reduced in aged skin compared to its young skin. Yet, the majority of collagen mRNA expression levels of aged sun-exposed skin are similar to those found in young sun-exposed skin. This discrepancy is primarily attributable to a substantial decrease in collagen transcription in young sun-exposed skin, suggesting early molecular changes in matrisome transcription due to sun exposure, which preceded the emergence of clinical signs of photoaging. These findings shed light on the mRNA transcript profile of major matrisome proteins and their alterations in naturally aged and photoaged human skin, offering valuable insights into skin matrisome biology.
Collapse
Affiliation(s)
- Yan Yan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| | - Hehui Quan
- Lenox Hill Hospital, 100 E 77th St., New York, NY 10075, USA;
| | - Chunfang Guo
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| |
Collapse
|
3
|
Magne B, Ferland K, Savard É, Barbier MA, Morissette A, Larouche D, Beaudoin-Cloutier C, Germain L. The Human Neonatal Skin Fibroblast, an Available Cell Source for Tissue Production and Transplantation, Exhibits Low Risk of Immunogenicity In Vitro. Int J Mol Sci 2024; 25:6965. [PMID: 39000078 PMCID: PMC11241615 DOI: 10.3390/ijms25136965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
The immunogenicity of allogeneic skin fibroblasts in transplantation has been controversial. Whether this controversy comes from a natural heterogeneity among fibroblast subsets or species-specific differences between human and mouse remains to be addressed. In this study, we sought to investigate whether fibroblasts derived from either adult or neonatal human skin tissues could induce different immune responses toward phagocytosis and T cell activation using in vitro co-culture models. Our results indicate that both phagocytosis and T cell proliferation are reduced in the presence of neonatal skin fibroblasts compared to adult skin fibroblasts. We also show that neonatal skin fibroblasts secrete paracrine factors that are responsible for reduced T cell proliferation. In addition, we show that neonatal skin fibroblasts express less class II human leukocyte antigen (HLA) molecules than adult skin fibroblasts after interferon gamma priming, which might also contribute to reduced T cell proliferation. In conclusion, this study supports the use of allogeneic neonatal skin fibroblasts as a readily available cell source for tissue production and transplantation to treat patients with severe injuries.
Collapse
Affiliation(s)
- Brice Magne
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada
- CHU de Québec-Université Laval Research Centre, Québec City, QC G1E 6W2, Canada
| | - Karel Ferland
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada
- CHU de Québec-Université Laval Research Centre, Québec City, QC G1E 6W2, Canada
| | - Étienne Savard
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada
- CHU de Québec-Université Laval Research Centre, Québec City, QC G1E 6W2, Canada
| | - Martin A. Barbier
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada
- CHU de Québec-Université Laval Research Centre, Québec City, QC G1E 6W2, Canada
| | - Amélie Morissette
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada
- CHU de Québec-Université Laval Research Centre, Québec City, QC G1E 6W2, Canada
| | - Danielle Larouche
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada
- CHU de Québec-Université Laval Research Centre, Québec City, QC G1E 6W2, Canada
| | - Chanel Beaudoin-Cloutier
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada
- CHU de Québec-Université Laval Research Centre, Québec City, QC G1E 6W2, Canada
- Burn Care Unit, CHU de Québec-Université Laval Hospital, Québec City, QC G1J 1Z4, Canada
| | - Lucie Germain
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada
- CHU de Québec-Université Laval Research Centre, Québec City, QC G1E 6W2, Canada
| |
Collapse
|
4
|
DiIorio SE, Young B, Parker JB, Griffin MF, Longaker MT. Understanding Tendon Fibroblast Biology and Heterogeneity. Biomedicines 2024; 12:859. [PMID: 38672213 PMCID: PMC11048404 DOI: 10.3390/biomedicines12040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tendon regeneration has emerged as an area of interest due to the challenging healing process of avascular tendon tissue. During tendon healing after injury, the formation of a fibrous scar can limit tendon strength and lead to subsequent complications. The specific biological mechanisms that cause fibrosis across different cellular subtypes within the tendon and across different tendons in the body continue to remain unknown. Herein, we review the current understanding of tendon healing, fibrosis mechanisms, and future directions for treatments. We summarize recent research on the role of fibroblasts throughout tendon healing and describe the functional and cellular heterogeneity of fibroblasts and tendons. The review notes gaps in tendon fibrosis research, with a focus on characterizing distinct fibroblast subpopulations in the tendon. We highlight new techniques in the field that can be used to enhance our understanding of complex tendon pathologies such as fibrosis. Finally, we explore bioengineering tools for tendon regeneration and discuss future areas for innovation. Exploring the heterogeneity of tendon fibroblasts on the cellular level can inform therapeutic strategies for addressing tendon fibrosis and ultimately reduce its clinical burden.
Collapse
Affiliation(s)
- Sarah E. DiIorio
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bill Young
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Jennifer B. Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Nikolaev VV, Kistenev YV, Kröger M, Zuhayri H, Darvin ME. Review of optical methods for noninvasive imaging of skin fibroblasts-From in vitro to ex vivo and in vivo visualization. JOURNAL OF BIOPHOTONICS 2024; 17:e202300223. [PMID: 38018868 DOI: 10.1002/jbio.202300223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Fibroblasts are among the most common cell types in the stroma responsible for creating and maintaining the structural organization of the extracellular matrix in the dermis, skin regeneration, and a range of immune responses. Until now, the processes of fibroblast adaptation and functioning in a varying environment have not been fully understood. Modern laser microscopes are capable of studying fibroblasts in vitro and ex vivo. One-photon- and two-photon-excited fluorescence microscopy, Raman spectroscopy/microspectroscopy are well-suited noninvasive optical methods for fibroblast imaging in vitro and ex vivo. In vivo staining-free fibroblast imaging is not still implemented. The exception is fibroblast imaging in tattooed skin. Although in vivo noninvasive staining-free imaging of fibroblasts in the skin has not yet been implemented, it is expected in the future. This review summarizes the state-of-the-art in fibroblast visualization using optical methods and discusses the advantages, limitations, and prospects for future noninvasive imaging.
Collapse
Affiliation(s)
- Viktor V Nikolaev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Yury V Kistenev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Marius Kröger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - Hala Zuhayri
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Maxim E Darvin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|