1
|
Seth R, Meena A, Gosai A, Imam MW, Meena R, Luqman S. Novel nanoformulation for enhanced amphotericin B efficacy and sustained release using vetiver root cellulose nanofibers against Candida albicans. Int J Biol Macromol 2024:136555. [PMID: 39427798 DOI: 10.1016/j.ijbiomac.2024.136555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
The formidable antifungal agent, Amphotericin B, is well-known for its potency; however, its clinical application has been significantly limited due to toxicity and poor solubility. This study aims to address these challenges by developing and evaluating a novel nano-cellulose-based formulation of Amphotericin B to enhance its efficacy. Amphotericin B was encapsulated within cellulose nanofibers at varying ratios to optimize formulation parameters, including drug concentration, particle size, zeta potential, and entrapment efficiency. Notably, a composition ratio of 10:1 of cellulose nanofibers to Amphotericin B achieved an impressive encapsulation efficiency of 96.64 %. Subsequent physicochemical characterizations employing techniques such as FTIR, DLS, XRD, and SEM provided insights into structural attributes and interactions within formulation. Controlled and extended-release profiles were observed at various physiological pH levels, with the Korsmeyer-Peppas model showing the highest correlation, indicating predominant drug diffusion. Importantly, nanoformulation demonstrated non-toxicity to A431 cells and human erythrocytes up to a maximum concentration of 20 μg/ml, as corroborated by MTT and hemolysis assays. Furthermore, antimicrobial susceptibility and efficacy assessments, conducted using agar diffusion and broth micro-dilution methods, revealed enhanced inhibition of Candida albicans growth. The nanoformulation produced a larger zone of inhibition (DIZ) of 19.66 mm compared to a DIZ of 16.33 mm for Amphotericin B alone. Impressively, the nanoformulation exhibited a minimum inhibitory concentration (MIC) of 25 μg/ml against Candida albicans, underscoring its heightened efficacy. Additionally, the formulation's ability to improve the targetability and bioavailability of Amphotericin B holds promise for enhancing its antifungal effectiveness while reducing associated toxicity.
Collapse
Affiliation(s)
- Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Amit Gosai
- Natural Products & Green Chemistry Discipline, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Md Waquar Imam
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ramavatar Meena
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Natural Products & Green Chemistry Discipline, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med 2024; 22:4. [PMID: 38167027 PMCID: PMC10762857 DOI: 10.1186/s12967-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.
Collapse
Affiliation(s)
- Li Yuhan
- Epilepsy Research Center, Münster University, Münster, Germany
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster, Germany.
- Department of Neurosurgery, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Zhu T, Liang D, Zhang Q, Sun W, Shen X. Curcumin-encapsulated fish gelatin-based microparticles from microfluidic electrospray for postoperative gastric cancer treatment. Int J Biol Macromol 2024; 254:127763. [PMID: 37924901 DOI: 10.1016/j.ijbiomac.2023.127763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Gastric cancer is the fifth most frequently diagnosed malignant neoplasm and the third leading cause of cancer-related mortality. Nevertheless, the therapeutic efficacy of conventional surgical and chemotherapeutic interventions in clinical practice is often unsatisfactory. Curcumin (Cur) has shown promise as a therapeutic agent in prior studies. However, its progress in this context has been impeded by challenges including low solubility, instability in aqueous environments, and rapid metabolism. In this study, we develop methacrylate fish gelatin (FGMA) hydrogel microparticles (FGMPs@Cur) encapsulating Cur via microfluidic electrospray technology for postoperative comprehensive treatment of gastric cancer. Comprehensive characterizations and analyses were conducted to assess the cytotoxicity against gastric cancer cells and potential tissue reparative effects of FGMPs@Cur. In vitro experiments revealed that FGMPs@Cur exhibited a remarkable cytotoxic effect on nearly 80 % of gastric cancer cells while maintaining at least 95 % viability of normal cells in cell compatibility tests. In vivo results demonstrated that FGMPs@Cur significantly reduced tumor volume to 47 % of the control group, and notable tissue regeneration was observed at the surgical site. These properties indicated that such a hydrogel microparticle system is a promising candidate for postoperative gastric cancer treatment in practical application.
Collapse
Affiliation(s)
- Tianru Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Danna Liang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qingfei Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical Uiversity, Wenzhou 325035, China.
| |
Collapse
|
4
|
Garrido G, Garrido-Suárez BB, Mieres-Arancibia M, Valdes-Gonzalez M, Ardiles-Rivera A. Modified pectin with anticancer activity in breast cancer: A systematic review. Int J Biol Macromol 2024; 254:127692. [PMID: 37898255 DOI: 10.1016/j.ijbiomac.2023.127692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. The current pharmacological treatments for breast cancer have numerous adverse effects and are not always effective. Recently, the anticancer activity of modified pectins (MPs) against various types of cancers, including breast cancer, has been investigated. This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model, including scientific articles from the last 22 years that measured the anticancer activity of MPs on breast cancer. The articles were searched in four databases with the terms: "modified pectin" and "breast cancer". Nine articles were included, five in vitro and four mixed (in vitro and in vivo). Different models and methods by which anticancer activity was measured were analyzed. All the studies reported positive results in both cell lines and in vivo murine models of breast cancer. The extracted data suggest a positive effect and provide mechanistic evidence of MPs in the treatment of breast cancer. However, as limited number of studies were included, further in vivo studies are required to obtain more conclusive preclinical evidence.
Collapse
Affiliation(s)
- Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile.
| | | | - Mario Mieres-Arancibia
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile
| | - Marisela Valdes-Gonzalez
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile
| | - Alejandro Ardiles-Rivera
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Antofagasta, Chile
| |
Collapse
|
5
|
Kraevsky SV, Ivanova IA, Kanashenko SL, Shumov ID, Ryazantsev IA, Tereshkina YA, Kostryukova LV, Romashova YA, Pleshakova TO. Nanoform of Phospholipid Composition: Investigation of the Morphological Features by Atomic Force Microscopy. Int J Mol Sci 2023; 24:15338. [PMID: 37895017 PMCID: PMC10607005 DOI: 10.3390/ijms242015338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Morphological features of the nanoform of a phospholipid composition (NFPh), which can be used as an individual pharmaceutic agent or as a platform for designing drug delivery systems, have been studied using atomic force microscopy (AFM). NFPh has been developed, and its characteristics have been investigated using conventional drug analysis methods, including the determination of the mean diameter of nanosized vesicles in the emulsion via dynamic light scattering (DLS). Using DLS, the mean diameter of the vesicles was found to be ~20 nm. AFM imaging of the surface has revealed four types of objects related to NFPh: (1) compact objects; (2) layer fragments; (3) lamellar structures; and (4) combined objects containing the compact and extended parts. For type (4) objects, it has been found that the geometric ratio of the volume of the convex part to the total area of the entire object is constant. It has been proposed that these objects formed owing to fusion of vesicles of the same size (with the same surface-to-volume ratio). It has been shown that this is possible for vesicles with diameters of 20 nm. This diameter is in good coincidence with the value obtained using DLS.
Collapse
Affiliation(s)
- Sergey V. Kraevsky
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10, Moscow 119121, Russia; (I.A.I.); (S.L.K.); (I.D.S.); (I.A.R.); (Y.A.T.); (L.V.K.); (Y.A.R.); (T.O.P.)
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang Y, Chen S, Wang C, Guo F. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives. Biomed Pharmacother 2023; 166:115348. [PMID: 37639743 DOI: 10.1016/j.biopha.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is the second-most lethal global disease, as per health reports, and is responsible for around 70% of deaths in low- and middle-income countries. Endometrial cancer is one of the emerging malignancies and has been predicted as a public health challenge for the future. Insulin resistance, obesity, and diabetes mellitus are the key metabolic factors that promote risks for the development of endometrial cancer. Various signaling pathways and associated genes are involved in the genesis of endometrial cancer, and any mutation or deletion in such related factors leads to the induction of endometrial cancer. The conventional way of drug delivery has been used for ages but is associated with poor management of cancer due to non-targeting of the endometrial cancer cells, low efficacy of the therapy, and toxicity issues as well. In this context, nanocarrier-based therapy for the management of endometrial cancer is an effective alternate choice that overcomes the problems associated with conventional therapy. In this review article, we highlighted the nanocarrier-based targeting of endometrial cancer, with a special focus on targeting various metabolic signaling pathways. Furthermore, the future perspectives of nanocarrier-based targeting of metabolic pathways in endometrial cancer were also underpinned. It is concluded that targeting metabolic signaling pathways in endometrial cancer via nanocarrier scaffolds is the future of pharmaceutical design for the significant management and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun 130000, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
7
|
Kannan S, Cheng VWT. Nanoparticle drug delivery to target breast cancer brain metastasis: Current and future trends. Int J Cancer 2023; 153:1118-1129. [PMID: 37096795 DOI: 10.1002/ijc.34542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Breast cancer brain metastasis (BCBM) is rapidly becoming an impediment to continuing survival gains seen in breast cancer patients. Drug delivery across the blood-brain barrier is the main issue hindering systemic therapy against BCBM. This review details recent advances in nanoparticle (NP) drug delivery systems to target BCBM. Their primary benefits are: enhanced circulating and intra-BCBM drug biodistribution, BCBM targeting through NP functionalization, opportunities for gene manipulation and their theragnostic applications. Multiple NPs have been synthesized to deliver therapeutic HER2 blockade, which is particularly important given HER2-positive breast cancer's tendency to form BCBM. Finally, we review the clinical context in which NP-based therapeutics have been investigated in BCBM patients. While a breakthrough in improving patient outcomes remain awaited, these clinical trials represent positive steps in the changing attitude towards BCBM as a treatable illness. Although multiple challenges remain in the clinical translation of BCBM-directed NP therapies, ongoing research in the field offers promising avenues for novel targeting of this devastating disease.
Collapse
Affiliation(s)
- Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston, UK
| | - Vinton W T Cheng
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Fatima Qizilbash F, Sartaj A, Qamar Z, Kumar S, Imran M, Mohammed Y, Ali J, Baboota S, Ali A. Nanotechnology revolutionises breast cancer treatment: harnessing lipid-based nanocarriers to combat cancer cells. J Drug Target 2023; 31:794-816. [PMID: 37525966 DOI: 10.1080/1061186x.2023.2243403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
One of the most common cancers that occur in females is breast cancer. Despite the significant leaps and bounds that have been made in treatment of breast cancer, the disease remains one of the leading causes of death among women and a major public health challenge. The therapeutic efficacy of chemotherapeutics is hindered by chemoresistance and toxicity. Nano-based lipid drug delivery systems offer controlled drug release, nanometric size and site-specific targeting. Breast cancer treatment includes surgery, chemotherapy and radiotherapy. Despite this, no single method of treatment for the condition is currently effective due to cancer stem cell metastasis and chemo-resistance. Therefore, the employment of nanocarrier systems is necessary in order to target breast cancer stem cells. This article addresses breast cancer treatment options, including modern treatment procedures such as chemotherapy, etc. and some innovative therapeutic options highlighting the role of lipidic nanocarriers loaded with chemotherapeutic drugs such as nanoemulsion, solid-lipid nanoparticles, nanostructured lipid carriers and liposomes, and their investigations have demonstrated that they can limit cancer cell growth, reduce the risk of recurrence, as well as minimise post-chemotherapy metastasis. This article also explores FDA-approved lipid-based nanocarriers, commercially available formulations, and ligand-based formulations that are being considered for further research.
Collapse
Affiliation(s)
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Lloyd School of Pharmacy, Greater Noida, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
9
|
Olennikov DN, Chirikova NK. Hogweed Seed Oil: Physico-Chemical Characterization, LC-MS Profile, and Neuroprotective Activity of Heracleum dissectum Nanosuspension. Life (Basel) 2023; 13:life13051112. [PMID: 37240757 DOI: 10.3390/life13051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The seeds of dissected hogweed (Heracleum dissectum Ledeb., Apiaceae) are the source of hogweed oil (HSO), which is still underexplored and requires careful chemical and biological studies. The performed physico-chemical analysis of HSO elucidated basic physical characteristics and revealed the presence of fatty acids, essential oil components, pigments, and coumarins. High-performance liquid chromatography with photodiode array detection and electrospray ionization triple quadrupole mass spectrometric detection (HPLC-PDA-ESI-tQ-MS/MS) identified 38 coumarins that were characterized and quantified. Various furanocoumarins were the major components of HSO polyphenolics, including imperatorin, phellopterin, and isoimperatorin, and the total coumarin content in HSO varied from 181.14 to 238.42 mg/mL. The analysis of storage stability of the selected compounds in HSO indicated their good preservation after 3-year storage at cold and freezing temperatures. The application of the CO2-assisted effervescence method allowed the production of an HSO nanosuspension, which was used in a brain ischemia model of rats. The HSO nanosuspension enhanced cerebral hemodynamics and decreased the frequency of necrotic processes in the brain tissue. Thus, H. dissectum seeds are a good source of coumarins, and HSO nanosuspension promotes neuroprotection of the brain after lesions, which supports earlier ethnopharmacological data.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakhyanovoy Street, 670047 Ulan-Ude, Russia
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia
| |
Collapse
|
10
|
Das A, Adhikari S, Deka D, Baildya N, Sahare P, Banerjee A, Paul S, Bisgin A, Pathak S. An Updated Review on the Role of Nanoformulated Phytochemicals in Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040685. [PMID: 37109643 PMCID: PMC10143464 DOI: 10.3390/medicina59040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
The most common cancer-related cause of death worldwide is colorectal cancer. It is initiated with the formation of polyps, which further cause the development of colorectal cancer in multistep phases. Colorectal cancer mortality is high despite recent treatment breakthroughs and a greater understanding of its pathophysiology. Stress is one of the major causes of triggering different cellular signalling cascades inside the body and which might turn toward the development of cancer. Naturally occurring plant compounds or phytochemicals are being studied for medical purposes. Phytochemicals' benefits are being analyzed for inflammatory illnesses, liver failure, metabolic disorders, neurodegenerative disorders, and nephropathies. Cancer treatment with fewer side effects and better outcomes has been achieved by combining phytochemicals with chemotherapy. Resveratrol, curcumin, and epigallocatechin-3-gallate have been studied for their chemotherapeutic and chemopreventive potentiality, but hydrophobicity, solubility, poor bioavailability, and target selectivity limit the clinical uses of these compounds. The therapeutic potential is maximized by utilizing nanocarriers such as liposomes, micelles, nanoemulsions, and nanoparticles to increase phytochemical bioavailability and target specificity. This updated literature review discusses the clinical limitations, increased sensitivity, chemopreventive and chemotherapeutic effects, and the clinical limitations of the phytochemicals.
Collapse
Affiliation(s)
- Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Suman Adhikari
- Department of Chemistry, Govt. Degree College, Dharmanagar 799253, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla 76230, Querétaro, Mexico
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo 76130, Querétaro, Mexico
| | - Atil Bisgin
- Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Medical Genetics Department of Medical Faculty, Cukurova University, Adana 01330, Turkey
- InfoGenom RD Laboratories of Cukurova Technopolis, Adana 01330, Turkey
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
11
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
12
|
Choi H, Kim K. Theranostics for Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13020272. [PMID: 36673082 PMCID: PMC9857659 DOI: 10.3390/diagnostics13020272] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor prognosis. Current endocrine therapy or anti HER-2 therapy is not available for these patients. Chemotherapeutic treatment response varies among patients due to the disease heterogeneity. To overcome these challenges, theranostics for treating TNBC have been widely investigated. Anticancer material conjugated nanoparticles with target-binding ligand and tracer agents enable simultaneous drug delivery and visualization of the lesion with minimal off-target toxicity. In this review, we summarize recently FDA-approved targeted therapies for TNBC, such as poly-ADP-ribose polymerase (PARP) inhibitors, check point inhibitors, and antibody-drug conjugates. Particularly, novel theranostic approaches including lipid-based, polymer-based, and carbon-based nanocarriers are discussed, which can provide basic overview of nano-therapeutic modalities in TNBC diagnosis and treatment.
Collapse
Affiliation(s)
- Hyeryeon Choi
- Department of Surgery, Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Republic of Korea
| | - Kwangsoon Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence:
| |
Collapse
|
13
|
Potential Nanotechnology-Based Therapeutics to Prevent Cancer Progression through TME Cell-Driven Populations. Pharmaceutics 2022; 15:pharmaceutics15010112. [PMID: 36678741 PMCID: PMC9864587 DOI: 10.3390/pharmaceutics15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high risk of metastasis and therapeutic resistance. These issues are closely linked to the tumour microenvironment (TME) surrounding the tumour tissue. The association between residing TME components with tumour progression, survival, and metastasis has been well elucidated. Focusing on cancer cells alone is no longer considered a viable approach to therapy; thus, there is a high demand for TME targeting. The benefit of using nanoparticles is their preferential tumour accumulation and their ability to target TME components. Several nano-based platforms have been investigated to mitigate microenvironment-induced angiogenesis, therapeutic resistance, and tumour progression. These have been achieved by targeting mesenchymal originating cells (e.g., cancer-associated fibroblasts, adipocytes, and stem cells), haematological cells (e.g., tumour-associated macrophages, dendritic cells, and myeloid-derived suppressor cells), and the extracellular matrix within the TME that displays functional and architectural support. This review highlights the importance of nanotechnology-based therapeutics as a promising approach to target the TME and improve treatment outcomes for TNBC patients, which can lead to enhanced survival and quality of life. The role of different nanotherapeutics has been explored in the established TME cell-driven populations.
Collapse
|
14
|
Padhy I, Paul P, Sharma T, Banerjee S, Mondal A. Molecular Mechanisms of Action of Eugenol in Cancer: Recent Trends and Advancement. Life (Basel) 2022; 12:1795. [PMID: 36362950 PMCID: PMC9699592 DOI: 10.3390/life12111795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cancer is, at present, among the leading causes of morbidity globally. Despite advances in treatment regimens for cancer, patients suffer from poor prognoses. In this context, the availability of vast natural resources seems to alleviate the shortcomings of cancer chemotherapy. The last decade has seen a breakthrough in the investigations related to the anticancer potential of dietary phytoconstituents. Interestingly, a handsome number of bioactive principles, ranging from phenolic acids, phenylpropanoids, flavonoids, stilbenes, and terpenoids to organosulphur compounds have been screened for their anticancer properties. Among the phenylpropanoids currently under clinical studies for anticancer activity, eugenol is a promising candidate. Eugenol is effective against cancers like breast, cervical, lung, prostate, melanomas, leukemias, osteosarcomas, gliomas, etc., as evident from preclinical investigations. OBJECTIVE The review aims to focus on cellular and molecular mechanisms of eugenol for cancer prevention and therapy. METHODS Based on predetermined criteria, various scholarly repositories, including PubMed, Scopus, and Science Direct were analyzed for anticancer activities of eugenol. RESULTS Different biochemical investigations reveal eugenol inducing cytotoxicity, inhibiting phases of the cell cycles, programmed cell death, and auto-phagocytosis in studied cancer lines; thus, portraying eugenol as a promising anticancer molecule. A survey of current literature has unveiled the molecular mechanisms intervened by eugenol in exercising its anticancer role. CONCLUSION Based on the critical analysis of the literature, eugenol exhibits vivid signaling pathways to combat cancers of different origins. The reports also depict the advancement of novel nano-drug delivery approaches upgrading the therapeutic profile of eugenol. Therefore, eugenol nanoformulations may have enormous potential for both the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Ipsa Padhy
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha ‘O’Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, West Bengal, India
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha ‘O’Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713301, West Bengal, India
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M. R. College of Pharmaceutical Sciences and Research, Balisha 743234, West Bengal, India
| |
Collapse
|
15
|
Kutikuppala LVS, Kalyani PSV, Boppana SH, Mohapatra RK. Current State-of-the-art Cutting-edge Technologies for Nanonutraceuticals in Cancer. J Res Pharm Pract 2022; 11:165-166. [PMID: 37969615 PMCID: PMC10642583 DOI: 10.4103/jrpp.jrpp_6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/30/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- L. V. Simhachalam Kutikuppala
- Department of General Surgery, Konaseema Institute of Medical Sciences and Research Foundation, Amalapuram, Andhra Pradesh, India
| | | | - Sri Harsha Boppana
- Department of Anaesthesiology, Division of Perioperative Informatics, University of California, San Diego, CA, USA
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar Odisha, India
| |
Collapse
|
16
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
17
|
Mohapatra P, Singh P, Singh D, Sahoo S, Sahoo SK. Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
19
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
20
|
Bhattacharya S, Patel R, Joshi A. The Most Recent Discoveries in Heterocyclic Nanoformulations for Targeted Anticancer Therapy. Mini Rev Med Chem 2022; 22:1735-1751. [PMID: 35114919 DOI: 10.2174/138955752203220202164839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Every day, new cases of cancer patients whose recovery is delayed by multidrug resistance and chemotherapy side effects are identified, which severely limit treatment options. One of the most recent advances in nanotechnology is the effective usage of nanotechnology as drug carriers for cancer therapy. As a consequence, heterocyclic nanocarriers were put into practice to see whether they could have a better cure with positive results. The potential of a therapeutic agent to meet its desired goal is vital to its success in treating any disease. Heterocyclic moieties are molecules that have a wide variety of chemically therapeutic functions as well as a significant biological activity profile. Heterocyclic nano formulations play an important role in cell physiology and as possible arbitrators for typical biological reactions, making them valuable in cancer research. As a result, experts are working with heterocyclic nanoformulations to discover alternative approaches to treat cancer. Due to their unique physicochemical properties, heterocyclic compounds are real cornerstones in medicinal chemistry and promising compounds for the future drug delivery system. This review briefly explores the therapeutic relevance of heterocyclic compounds in cancer treatment, the various nanoformulations, and actively describes heterocyclic magnetic nano catalysts and heterocyclic moiety, as well as their mode of action, which have favorable anti - cancer effects.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Rajat Patel
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Aalind Joshi
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
21
|
Gupta S, Tejavath KK. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Wei F, Xie Q, Huang Z, Yang A, Duan Y. Induction of autophagy and ER-phagy caused by CdTe-QDs are protective mechanisms of yeast cell. J Appl Toxicol 2022; 42:1146-1158. [PMID: 34989008 DOI: 10.1002/jat.4282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Quantum dots (QDs), with unique and tunable optical properties, have been are widely used in many fields closely related to our daily lives, such as biomedical application and electronic products. Therefore, the potential toxicity of QDs on the human health should be understood. Autophagy plays an important role in cell survival and death. Endoplasmic reticulum autophagy (ER-phagy), a selective autophagy that degrades ER, responds to the accumulation of misfolded proteins and ER stress. Although many reports have revealed that autophagy can be disturbed by CdTe-QDs and other nanomaterials, there are still lack more detail researches to illustrate the function of autophagy in CdTe-QDs treated cells. And the function of ER-phagy in CdTe-QDs-treated cells remains to be illustrated. On the basis of transcriptome analysis, we explored the effect of CdTe-QDs on Saccharomyces cerevisiae, and firstly illustrated that both of autophagy and ER-phagy were protective mechanisms in CdTe-QDs-treated cells. It was found that CdTe-QDs inhibited the proliferation of yeast cells, disrupted homeostasis of cells, membrane integrity and metabolism process. All of these can be reasons of the reduction of cell viability. The abolish of autophagy and ER-phagy reduce the cell survival, indicating both of them are cell protective mechanisms against CdTe-QDs toxicity in yeast cells. Therefore, our data are significant for the application of CdTe-QDs and provide precious information for understanding of nanomaterials-related ER-phagy.
Collapse
Affiliation(s)
- Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China.,School of Life Sciences, Chongqing University, Chongqing, China
| | - Qiyue Xie
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shanxi, PR China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
23
|
Pillai SC, Borah A, Jacob EM, Kumar DS. Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Deliv 2021; 28:550-568. [PMID: 33703990 PMCID: PMC7954496 DOI: 10.1080/10717544.2021.1892241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is Caesar's sword, which poses a huge risk to the present generation. Understanding the atherosclerotic disease cycle would allow ensuring improved diagnosis, better care, and treatment. Unfortunately, a highly effective and safe way of treating atherosclerosis in the medical community remains a continuous challenge. Conventional treatments have shown considerable success, but have some adverse effects on the human body. Natural derived medications or nutraceuticals have gained immense popularity in the treatment of atherosclerosis due to their decreased side effects and toxicity-related issues. In hindsight, the contribution of nutraceuticals in imparting enhanced clinical efficacy against atherosclerosis warrants more experimental evidence. On the other hand, nanotechnology and drug delivery systems (DDS) have revolutionized the way therapeutics are performed and researchers have been constantly exploring the positive effects that DDS brings to the field of therapeutic techniques. It could be as exciting as ever to apply nano-mediated delivery of nutraceuticals as an additional strategy to target the atherosclerotic sites boasting high therapeutic efficiency of the nutraceuticals and fewer side effects.
Collapse
Affiliation(s)
- Sindhu C. Pillai
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Ankita Borah
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Eden Mariam Jacob
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| |
Collapse
|
24
|
Saraf A, Dubey N, Dubey N, Sharma M. Enhancement of cytotoxicty of diallyl disulfide toward colon cancer by Eudragit S100/PLGA nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Huang W, Xing Y, Zhu L, Zhuo J, Cai M. Sorafenib derivatives-functionalized gold nanoparticles confer protection against tumor angiogenesis and proliferation via suppression of EGFR and VEGFR-2. Exp Cell Res 2021; 406:112633. [PMID: 34089726 DOI: 10.1016/j.yexcr.2021.112633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Sorafenib is a multi-kinase inhibitor that has been highlighted as a tumor suppressor due to its anti-proliferative and anti-angiogenic properties, whereas the clinical application of Sorafenib is restricted by the side effects it may cause. The past decade has witnessed the development of a series of sorafenib derivatives to improve the clinical performance of sorafenib. Gold nanoparticles (AuNPs) have been widely utilized in drug delivery systems due to their unique properties, including biocompatible nature, simple preparation, and easy surface modification. Herein, this study is aimed to investigate the anti-tumor effects of new sorafenib derivatives-capped gold nanoparticles (AuNPs-New Sor) in tumor formation and metastasis as well as the underlying mechanisms. Initially, new sorafenib derivatives were constructed and combined with AuNPs to form AuNPs-New Sor, and the properties of synthesized AuNPs-New Sor were identified in a mouse model of tumorigenesis. The effect of AuNPs-New Sor on tumor vascular normalization was investigated by assessing vascular permeability and perfusion rate. Next, we evaluated the effect of AuNPs-New Sor on migration and viability of tumor cells and human umbilical vein endothelial cells (HUVECs) as well as on HUVEC angiogenesis in vitro. A melanoma mouse model was further established for in vivo substantiation of the anti-tumor effect of AuNPs-New Sor. According to the results, AuNPs could deliver new sorafenib derivatives into tumor tissues and downregulate the expression of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-2 (VEGFR-2), thereby suppressing tumor migration, EMT, and angiogenesis in vitro. In addition, AuNPs-New Sor displayed competitive anti-tumor activities in vivo. Taken together, AuNPs-New Sor may attenuate tumor development and angiogenesis through downregulation of EGFR and VEGFR-2.
Collapse
Affiliation(s)
- Wei Huang
- Department of Urology Surgery, Chinese Medical Hospital of Hainan Province, Haikou, 570203, PR China
| | - Yitao Xing
- Department of Urology Surgery, Chinese Medical Hospital of Hainan Province, Haikou, 570203, PR China
| | - Lile Zhu
- Department of Respiratory, Chinese Medical Hospital of Hainan Province, Haikou, 570203, PR China
| | - Jinsheng Zhuo
- Department of Gastroenterology, Chinese Medical Hospital of Hainan Province, Haikou, 570203, PR China
| | - Min Cai
- Department of Urology Surgery, Chinese Medical Hospital of Hainan Province, Haikou, 570203, PR China.
| |
Collapse
|
26
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
27
|
Zielińska A, Szalata M, Gorczyński A, Karczewski J, Eder P, Severino P, Cabeda JM, Souto EB, Słomski R. Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers (Basel) 2021; 13:1896. [PMID: 33920840 PMCID: PMC8071188 DOI: 10.3390/cancers13081896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Physicochemical, pharmacokinetic, and biopharmaceutical characterization tools play a key role in the assessment of nanopharmaceuticals' potential imaging analysis and for site-specific delivery of anti-cancers to neoplastic cells/tissues. If diagnostic tools and therapeutic approaches are combined in one single nanoparticle, a new platform called nanotheragnostics is generated. Several analytical technologies allow us to characterize nanopharmaceuticals and nanoparticles and their properties so that they can be properly used in cancer therapy. This paper describes the role of multifunctional nanoparticles in cancer diagnosis and treatment, describing how nanotheragnostics can be useful in modern chemotherapy, and finally, the challenges associated with the commercialization of nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Marlena Szalata
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Patrícia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women & Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA;
- Biotechnological Postgraduate Program, Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), University of Tiradentes (Unit), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - José M. Cabeda
- ESS-FP, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia 334, 4200-253 Porto, Portugal;
- FP-ENAS-Fernando Pessoa Energy, Environment and Health Research Unit, Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB–Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
| |
Collapse
|
28
|
Sitia L, Bonizzi A, Mazzucchelli S, Negri S, Sottani C, Grignani E, Rizzuto MA, Prosperi D, Sorrentino L, Morasso C, Allevi R, Sevieri M, Silva F, Truffi M, Corsi F. Selective Targeting of Cancer-Associated Fibroblasts by Engineered H-Ferritin Nanocages Loaded with Navitoclax. Cells 2021; 10:328. [PMID: 33562504 PMCID: PMC7915356 DOI: 10.3390/cells10020328] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key actors in regulating cancer progression. They promote tumor growth, metastasis formation, and induce drug resistance. For these reasons, they are emerging as potential therapeutic targets. Here, with the aim of developing CAF-targeted drug delivery agents, we functionalized H-ferritin (HFn) nanocages with fibroblast activation protein (FAP) antibody fragments. Functionalized nanocages (HFn-FAP) have significantly higher binding with FAP+ CAFs than with FAP- cancer cells. We loaded HFn-FAP with navitoclax (Nav), an experimental Bcl-2 inhibitor pro-apoptotic drug, whose clinical development is limited by its strong hydrophobicity and toxicity. We showed that Nav is efficiently loaded into HFn (HNav), maintaining its mechanism of action. Incubating Nav-loaded functionalized nanocages (HNav-FAP) with FAP+ cells, we found significantly higher cytotoxicity as compared to non-functionalized HNav. This was correlated with a significantly higher drug release only in FAP+ cells, confirming the specific targeting ability of functionalized HFn. Finally, we showed that HFn-FAP is able to reach the tumor and to target CAFs in a mouse syngeneic model of triple negative breast cancer after intravenous administration. Our data show that HNav-FAP could be a promising tool to enhance specific drug delivery into CAFs, thus opening new therapeutic possibilities focused on tumor microenvironment.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Arianna Bonizzi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Sara Negri
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Cristina Sottani
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Elena Grignani
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Maria Antonietta Rizzuto
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (M.A.R.); (D.P.)
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (M.A.R.); (D.P.)
| | - Luca Sorrentino
- Colorectal Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Raffaele Allevi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Filippo Silva
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| |
Collapse
|