1
|
Zhu Y, Arkin G, Zeng W, Huang Y, Su L, Guo F, Ye J, Wen G, Xu J, Liu Y. Ultrasound image-guided cancer gene therapy using iRGD dual-targeted magnetic cationic microbubbles. Biomed Pharmacother 2024; 172:116221. [PMID: 38306843 DOI: 10.1016/j.biopha.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
The gene therapy attracted more and more attention for the tumor therapy. To obtain a safe gene therapy system, the new gene vectors beyond the virus were developed for a high gene therapy efficiency. The ultrasound mediated gene therapy was safer and the plasmid DNA could be delivered by the microbubbles and combined with the ultrasound to increase the gene transfection efficiency. In this work, the cationic microbubbles decorated with Cyclo(Cys-Arg-Gly-Asp-Lys-Gly-Pro-AspCys) (iRGD peptides) and magnetic Fe3O4 nanoparticles (MBiM) was designed for targeted ultrasound contrast imaging guided gene therapy of tumors. The ultrasound image intensity was dramatically enhanced at the tumor site that received MBiM with the magnet applied, compared to those administrated the non-targeted microbubbles (MBb) or the microbubbles with only one target material on the surface (MBM and MBbi). The pGPU6/GFP/Neo-shAKT2 was used as a sample gene, which down regulate the AKT2 protein expression for the cancer therapy. It illustrated that MBiM/AKT2 had the highest gene transfection efficiency in the studied microbubbles mediated by the ultrasound, leading to the AKT2 protein expression downregulation and the strongest tumor killing effect in vitro and in vivo. In summary, a novel and biocompatible gene delivery platform via MBiM with both the endogenous and external targeting effects for breast cancer theranostics was developed.
Collapse
Affiliation(s)
- Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Gulzira Arkin
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Wei Zeng
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Yalan Huang
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Lili Su
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Fengjuan Guo
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jiayu Ye
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guanxi Wen
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jinfeng Xu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China.
| | - Yingying Liu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China.
| |
Collapse
|
2
|
Agbaria M, Jbara-Agbaria D, Grad E, Ben-David-Naim M, Aizik G, Golomb G. Nanoparticles of VAV1 siRNA combined with LL37 peptide for the treatment of pancreatic cancer. J Control Release 2023; 355:312-326. [PMID: 36736910 DOI: 10.1016/j.jconrel.2023.01.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related death, and it is highly resistant to therapy owing to its unique extracellular matrix. VAV1 protein, overexpressed in several cancer diseases including pancreatic cancer (PC), increases tumor proliferation and enhances metastases formation, which are associated with decreased survival. We hypothesized that an additive anti-tumor effect could be obtained by co-encapsulating in PLGA nanoparticles (NPs), the negatively charged siRNA against VAV1 (siVAV1) with the positively charged anti-tumor LL37 peptide, as a counter-ion. Several types of NPs were formulated and were characterized for their physicochemical properties, cellular internalization, and bioactivity in vitro. NPs' biodistribution, toxicity, and bioactivity were examined in a mice PDAC model. An optimal siVAV1 formulation (siVAV1-LL37 NPs) was characterized with desirable physicochemical properties in terms of nano-size, low polydispersity index (PDI), neutral surface charge, high siVAV1 encapsulation efficiency, spherical shape, and long-term shelf-life stability. Cell assays demonstrated rapid engulfment by PC cells, a specific and significant dose-dependent proliferation inhibition, as well as knockdown of VAV1 mRNA levels and migration inhibition in VAV1+ cells. Treatment with siVAV1-LL37 NPs in the mice PDAC model revealed marked accumulation of NPs in the liver and in the tumor, resulting in an increased survival rate following suppression of tumor growth and metastases, mediated via the knockdown of both VAV1 mRNA and protein levels. This proof-of-concept study validates our hypothesis of an additive effect in the treatment of PC facilitated by co-encapsulating siVAV1 in NPs with LL37 serving a dual role as a counter ion as well as an anti-tumor agent.
Collapse
Affiliation(s)
- Majd Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Doaa Jbara-Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Etty Grad
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Meital Ben-David-Naim
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gil Aizik
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
3
|
Grassilli S, Brugnoli F, Cairo S, Bianchi N, Judde JG, Bertagnolo V. Vav1 Selectively Down-Regulates Akt2 through miR-29b in Certain Breast Tumors with Triple Negative Phenotype. J Pers Med 2022; 12:jpm12060993. [PMID: 35743776 PMCID: PMC9224635 DOI: 10.3390/jpm12060993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) represents the most aggressive breast tumor, showing a high intrinsic variability in terms of both histopathological features and response to therapies. Blocking the Akt signaling pathway is a well-studied approach in the treatment of aggressive breast tumors. The high homology among the Akt isoforms and their distinct, and possibly opposite, oncogenic functions made it difficult to develop effective drugs. Here we investigated the role of Vav1 as a potential down-regulator of individual Akt isozymes. We revealed that the over-expression of Vav1 in triple negative MDA-MB-231 cells reduced only the Akt2 isoform, acting at the post-transcriptional level through the up-modulation of miR-29b. The Vav1/miR-29b dependent decrease in Akt2 was correlated with a reduced lung colonization of circulating MDA-MB-231 cells. In cell lines established from PDX, the Vav1 induced down-modulation of Akt2 is strongly dependent on miR-29b and occurs only in some TNBC tumors. These findings may contribute to better classify breast tumors having the triple negative phenotype, and suggest that the activation of the Vav1/miR-29b axis, precisely regulating the amount of an Akt isozyme crucial for tumor dissemination, could have great potential for driving more accurate therapies to TNBCs, often not eligible or resistant to treatments.
Collapse
Affiliation(s)
- Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
| | - Stefano Cairo
- Xentech, 91000 Evry, France; (S.C.); (J.-G.J.)
- Istituto di Ricerca Pediatrica, 35127 Padova, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
| | | | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
- Correspondence:
| |
Collapse
|
4
|
NCF1/2/4 Are Prognostic Biomarkers Related to the Immune Infiltration of Kidney Renal Clear Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5954036. [PMID: 34708124 PMCID: PMC8545530 DOI: 10.1155/2021/5954036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023]
Abstract
Neutrophil cytoplasmic factor 1/2/4 (NCF1/2/4) belongs to the NADPH oxidase complex, which is a cytoplasmic component, and its polymorphism is the main factor related to autoimmune diseases, which is probably caused by the regulation of peroxide. They also play a role in tumor growth and metastasis. This research is aimed at evaluating the biological function and prognostic role of NCF1, NCF2, and NCF4 genes in kidney renal clear cell carcinoma (KIRC) by using multiple online bioinformatics website, including Oncomine, GEPIA, UALCAN, Kaplan-Meier Plotter, TIMER, TISIDB, cBioPortal, LinkedOmics, GeneMANIA, and DAVID databases. The mRNA levels of NCFs were higher in KIRC tissues than in normal tissues. The overexpression of NCFs was significantly correlated with advanced pathological grades and individual cancer stages in KIRC. Meanwhile, the expressions of NCFs played an important role in the tumorigenesis and progression of KIRC. Prognostic value analysis suggested that high transcription levels of NCF1/4 were associated with poor overall survival in KIRC patients. In addition, results from the LinkedOmics database showed that the KEGG pathway related to NCFs mainly focused on immune activation and immune regulation function. NCF genetic alterations, including copy number amplification, missense mutation, and deep deletion, could be found through the cBioPortal database. Further, NCF expression was significantly correlated with infiltration levels of various immune cells as well as immune signatures. Protein-protein interaction network and enrichment analysis of NCF1/2/4 in KIRC showed that NCF coexpressed genes mainly associated with diverse immune marker sets showed significance. Overall, these results indicated that NCFs could be prognostic biomarkers as well as effective targets for diagnosis in KIRC.
Collapse
|
5
|
The Heterogeneity of Infiltrating Macrophages in Metastatic Osteosarcoma and Its Correlation with Immunotherapy. JOURNAL OF ONCOLOGY 2021; 2021:4836292. [PMID: 34335756 PMCID: PMC8321719 DOI: 10.1155/2021/4836292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022]
Abstract
Background Metastatic osteosarcoma is a common and fatal bone tumor. Several studies have found that tumor-infiltrating immune cells play pivotal roles in the progression of metastatic osteosarcoma. However, the heterogeneity of infiltrating immune cells across metastatic and primary osteosarcoma remains unclear. Methods Immune infiltration analysis was carried out via the “ESTIMATE” and “xCell” algorithms in primary and metastatic osteosarcoma. Then, we evaluated the prognostic value of infiltrating immune cells in 85 osteosarcomas through the Kaplan–Meier (K-M) and receiver operating characteristic (ROC) curve. Infiltrations of macrophage M1 and M2 were evaluated in metastatic osteosarcoma, as well as their correlation with immune checkpoints. Macrophage-related prognostic genes were identified through Weighted Gene Coexpression Network Analysis (WGCNA), Lasso analysis, and Random Forest algorithm. Finally, a macrophage-related risk model had been constructed and validated. Results Macrophages, especially the macrophage M1, sparingly infiltrated in metastatic compared with the primary osteosarcoma and predicted the worse overall survival (OS) and disease-free survival (DFS). Macrophage M1 was positively correlated with immune checkpoints PDCD1, CD274 (PD-L1), PDCD1LG2, CTLA4, and TIGIT. In addition, four macrophage-related prognostic genes (IL10, VAV1, CD14, and CCL2) had been identified, and the macrophage-related risk model had been validated to be reliable for evaluating prognosis in osteosarcoma. Simultaneously, the risk score showed a strong correlation with several immune checkpoints. Conclusion Macrophages potentially contribute to the regulation of osteosarcoma metastasis. It can be used as a candidate marker for metastatic osteosarcoma' prognosis and immune checkpoints blockades (ICBs) therapy. We constructed a macrophage-related risk model through machine-learning, which might help us evaluate patients' prognosis and response to ICBs therapy.
Collapse
|
6
|
Thakur G, Kumar R, Kim SB, Lee SY, Lee SL, Rho GJ. Therapeutic Status and Available Strategies in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021; 9:biomedicines9020178. [PMID: 33670230 PMCID: PMC7916947 DOI: 10.3390/biomedicines9020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India;
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
- Correspondence:
| |
Collapse
|