1
|
Portugal J. Mithramycin and its analogs: Molecular features and antitumor action. Pharmacol Ther 2024; 260:108672. [PMID: 38838821 DOI: 10.1016/j.pharmthera.2024.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The antitumor antibiotic mithramycin A (MTA) binds to G/C-rich DNA sequences in the presence of dications. MTA inhibits transcription regulated by the Sp1 transcription factor, often enhanced during tumor development. It shows antitumor activity, but its clinical use was discontinued due to toxic side effects. However, recent observations have led to its use being reconsidered. The MTA biosynthetic pathways have been modified to produce mithramycin analogs (mithralogs) that encompass lower toxicity and improved pharmacological activity. Some mithralogs reduce gene expression in human ovarian and prostate tumors, among other types of cancer. They down-regulate gene expression in various cellular processes, including Sp1-responsive genes that control tumor development. Moreover, MTA and several mithralogs, such as EC-8042 (DIG-MSK) and EC-8105, effectively treat Ewing sarcoma by inhibiting transcription controlled by the oncogenic EWS-FLI1 transcription factor.
Collapse
Affiliation(s)
- José Portugal
- Instituto de Diagnóstico Ambiental y Estudios del Agua, CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
2
|
Liu S, Yang P, Wang L, Zou X, Zhang D, Chen W, Hu C, Xiao D, Ren H, Zhang H, Cai S. Targeting PAK4 reverses cisplatin resistance in NSCLC by modulating ER stress. Cell Death Discov 2024; 10:36. [PMID: 38238316 PMCID: PMC10796919 DOI: 10.1038/s41420-024-01798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Chemoresistance poses a significant impediment to effective treatments for non-small-cell lung cancer (NSCLC). P21-activated kinase 4 (PAK4) has been implicated in NSCLC progression by invasion and migration. However, the involvement of PAK4 in cisplatin resistance is not clear. Here, we presented a comprehensive investigation into the involvement of PAK4 in cisplatin resistance within NSCLC. Our study revealed enhanced PAK4 expression in both cisplatin-resistant NSCLC tumors and cell lines. Notably, PAK4 silencing led to a remarkable enhancement in the chemosensitivity of cisplatin-resistant NSCLC cells. Cisplatin evoked endoplasmic reticulum stress in NSCLC. Furthermore, inhibition of PAK4 demonstrated the potential to sensitize resistant tumor cells through modulating endoplasmic reticulum stress. Mechanistically, we unveiled that the suppression of the MEK1-GRP78 signaling pathway results in the sensitization of NSCLC cells to cisplatin after PAK4 knockdown. Our findings establish PAK4 as a promising therapeutic target for addressing chemoresistance in NSCLC, potentially opening new avenues for enhancing treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Shixin Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Pingshan Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Lu Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofang Zou
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Dongdong Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Wenyou Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Chuang Hu
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Duqing Xiao
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital, Naval Medical University, Shanghai, 200135, China.
- Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, 000465, China.
| | - Hao Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou; The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Songwang Cai
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
3
|
Fan K, Dong Y, Li T, Li Y. Cuproptosis-associated CDKN2A is targeted by plicamycin to regulate the microenvironment in patients with head and neck squamous cell carcinoma. Front Genet 2023; 13:1036408. [PMID: 36699463 PMCID: PMC9868476 DOI: 10.3389/fgene.2022.1036408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common malignancy of the head and neck, has an overall 5-year survival rate of <50%. Genes associated with cuproptosis, a newly identified copper-dependent form of cell death, are aberrantly expressed in various tumours. However, their role in HNSCC remains unknown. In this study, bioinformatic analysis revealed that the cuproptosis-related gene CDKN2A was correlated with the malignant behaviour of HNSCC. Kaplan-Meier (KM) curves showed that patients with high CDKN2A expression had a better prognosis. Multiomic analysis revealed that CDKN2A may be associated with cell cycle and immune cell infiltration in the tumour microenvironment and is important for maintaining systemic homeostasis in the body. Furthermore, molecular docking and molecular dynamics simulations suggested strong binding between plicamycin and CDKN2A. And plicamycin inhibits the progression of HNSCC in cellular assays. In conclusion, this study elucidated a potential mechanism of action of the cuproptosis-associated gene CDKN2A in HNSCC and revealed that plicamycin targets CDKN2A to improve the prognosis of patients.
Collapse
|
4
|
Koirala N, Butnariu M, Panthi M, Gurung R, Adhikari S, Subba RK, Acharya Z, Popović-Djordjević J. Antibiotics in the management of tuberculosis and cancer. ANTIBIOTICS - THERAPEUTIC SPECTRUM AND LIMITATIONS 2023:251-294. [DOI: 10.1016/b978-0-323-95388-7.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Dutta R, Khalil R, Mayilsamy K, Green R, Howell M, Bharadwaj S, Mohapatra SS, Mohapatra S. Combination Therapy of Mithramycin A and Immune Checkpoint Inhibitor for the Treatment of Colorectal Cancer in an Orthotopic Murine Model. Front Immunol 2021; 12:706133. [PMID: 34381456 PMCID: PMC8350740 DOI: 10.3389/fimmu.2021.706133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
The axis of Programmed cell death-1 receptor (PD-1) with its ligand (PD-L1) plays a critical role in colorectal cancer (CRC) in escaping immune surveillance, and blocking this axis has been found to be effective in a subset of patients. Although blocking PD-L1 has been shown to be effective in 5-10% of patients, the majority of the cohorts show resistance to this checkpoint blockade (CB) therapy. Multiple factors assist in the growth of resistance to CB, among which T cell exhaustion and immunosuppressive effects of immune cells in the tumor microenvironment (TME) play a critical role along with other tumor intrinsic factors. We have previously shown the polyketide antibiotic, Mithramycin-A (Mit-A), an effective agent in killing cancer stem cells (CSCs) in vitro and in vivo in a subcutaneous murine model. Since TME plays a pivotal role in CB therapy, we tested the immunomodulatory efficacy of Mit-A with anti-PD-L1 mAb (αPD-L1) combination therapy in an immunocompetent MC38 syngeneic orthotopic CRC mouse model. Tumors and spleens were analyzed by flow cytometry for the distinct immune cell populations affected by the treatment, in addition to RT-PCR for tumor samples. We demonstrated the combination treatment decreases tumor growth, thus increasing the effectiveness of the CB. Mit-A in the presence of αPD-L1 significantly increased CD8+ T cell infiltration and decreased immunosuppressive granulocytic myeloid-derived suppressor cells and anti-inflammatory macrophages in the TME. Our results revealed Mit-A in combination with αPD-L1 has the potential for augmented CB therapy by turning an immunologically "cold" into "hot" TME in CRC.
Collapse
Affiliation(s)
- Rinku Dutta
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Roukiah Khalil
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Karthick Mayilsamy
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ryan Green
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mark Howell
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Srinivas Bharadwaj
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Shyam S. Mohapatra
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Subhra Mohapatra
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|