1
|
Moradi H, Bahmanyar H, Azizpour H. Molecular simulation of liquid-liquid extraction of acetic acid and acetone from water in the presence of nanoparticles based on prediction of solubility parameters. Heliyon 2024; 10:e38086. [PMID: 39430454 PMCID: PMC11490820 DOI: 10.1016/j.heliyon.2024.e38086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
In this work, molecular dynamics simulation (MD) was used for studying the liquid-liquid extraction of acetic acid and acetone from water in the presence of nanoparticles. In the next step, the solubility parameter of acetic acid and acetone were predicted at 1 atm and different temperatures along with the solubility parameter of solvents and water at 25 °C and 1 atm. Three pure systems and three systems with different concentration of nanoparticles were investigated to show the effect of cell size or number of molecules on the solubility parameter. With the addition of SiO2 nanoparticles to the solvents, at low concentrations of nanoparticles (0.01-0.1 vol%), the solubility parameter is increased due to the Brownian motion. With the further increase concentration of the nanoparticles, the solubility parameter decreases due to the accumulation of nanoparticles. The difference between the solubility parameter of benzene and acetone was 0.414 (J/cm3)0.5 and 3.13 (J/cm3)0.5, with and without the presence of SiO2 nanoparticles, respectively. Finally, toluene was found to be the best solvent for acetone and acetic acid at silica nanoparticles concentration of 0.062 vol%.
Collapse
Affiliation(s)
- Hojatollah Moradi
- Surface Phenomenon and Liquid-Liquid Extraction Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hossein Bahmanyar
- Surface Phenomenon and Liquid-Liquid Extraction Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hedayat Azizpour
- Surface Phenomenon and Liquid-Liquid Extraction Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Nakamura J, Shiohama Y, Röth D, Haruta T, Yamashita Y, Mitsuzono T, Mochizuki C, Kalkum M, Nakamura M. Size and Surface Properties of Functionalized Organosilica Particles Impact Cell-Particle Interactions Including Mitochondrial Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30980-30996. [PMID: 38857433 DOI: 10.1021/acsami.4c06455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Understanding of the interactions between macrophages and multifunctional nanoparticles is important for development of novel macrophage-based immunotherapies. Here, we investigated the effects of fluorescent thiol-organosilica particle size and surface properties on cell-particle interactions, including mitochondrial activity, using the mouse macrophage cell line J774A.1. Three different sizes of thiol-organosilica particles (150, 400, and 680 nm in diameter) containing fluorescein (OS/F150, OS/F400, and OS/F680) and particles surface functionalized with polyethylenimine (PEI) (OS/F150PEI, OS/F400PEI, and OS/F680PEI) were prepared. Flow cytometric analysis, time-lapse imaging, and single-cell analysis of particle uptake and mitochondrial activity of J774A.1 cells demonstrated variations in uptake and kinetics depending on the particle size and surface as well as on each individual cell. Cells treated with OS/F150 and OS/F150PEI showed higher uptake and mitochondrial activity than those treated with other particles. The interaction between endosomes and mitochondria was observed using 3D fluorescent imaging and was characterized by the involvement of iron transport into mitochondria by iron-containing proteins adsorbed on the particle surface. Scanning electron microscopy of the cells treated with the particles revealed alterations in cell membrane morphology, depending on particle size and surface. We performed correlative light and electron microscopy combined with time-lapse and 3D imaging to develop an integrated correlation analysis of particle uptake, mitochondrial activity, and cell membrane morphology in single macrophages. These cell-specific characteristics of macrophages against functional particles and their evaluation methods are crucial for understanding the immunological functions of individual macrophages and developing novel immunotherapies.
Collapse
Affiliation(s)
- Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yasuo Shiohama
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Daniel Röth
- Department of Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Tomohiro Haruta
- EM application group, EM business unit, JEOL Ltd., Akishima, Tokyo JP 196-8558, Japan
| | - Yukari Yamashita
- Department of Organ Anatomy and Nanomedicine, School of Medicine, Facuelty of Medicine and Health Sciences, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Tomohiro Mitsuzono
- Department of Organ Anatomy and Nanomedicine, School of Medicine, Facuelty of Medicine and Health Sciences, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Markus Kalkum
- Department of Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
3
|
Shiohama Y, Nakamura J, Nakamura M. Cellular Distribution and Intracellular Localization of Different Sizes of Fluorescent Thiol-Organosilica Particles in Mouse Lungs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18627-18642. [PMID: 38590224 DOI: 10.1021/acsami.4c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We investigated the distribution of intratracheally administered thiol-organosilica (thiol-OS) particles in mouse lungs. Toward this end, single doses of thiol-OS particles containing fluorescein (140 nm in diameter) (F140) and rhodamine B (Rh) (Rh160, Rh280, Rh420, Rh640, and Rh1630 with diameters of 160, 280, 420, 640, and 1630 nm, respectively) were administered. After 24 h, fluorescence imaging revealed homogeneous fluorescence with a patchier pattern on the lung surface and no difference among the six particle sizes. Simultaneous dual administration of Rh and F140 particles did not reveal any size-dependent differences in the lung surface fluorescence. Fluorescence microscopy of the lung sections revealed a similar tissue distribution in the fluorescent areas of Rhs and F140. Some fluorescent areas showed one type of particle fluorescence or only one fluorescence. Cellular distribution of particles was observed in bronchoalveolar lavage cells and lung sections under a high magnification, and correlative light and electron microscopy revealed large cells with fluorescence corresponding to both particle types and small cells with fluorescence of individual particle types, indicating a cell-subset-dependent particle size effect. Rh280, Rh420, and Rh640 exhibited significant size effects and were taken up by alveolar macrophages. Extracellular particles were observed, indicating that saturation exceeded the particle dose threshold in the alveoli. F140 taken up by small and large macrophages colocalized with CD68, CD11c, and CD11b and correlated with CD11c. The size effect, intracellular localization, and extracellular distribution of particles provide insights into lung and systemic drug delivery.
Collapse
Affiliation(s)
- Yasuo Shiohama
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
4
|
Nicolae CL, Pîrvulescu DC, Antohi AM, Niculescu AG, Grumezescu AM, Croitoru GA. Silica nanoparticles in medicine: overcoming pathologies through advanced drug delivery, diagnostics, and therapeutic strategies. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:173-184. [PMID: 39020531 PMCID: PMC11384868 DOI: 10.47162/rjme.65.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Over the last decades, silica nanoparticles (SiNPs) have been studied for their applications in biomedicine as an alternative used for conventional diagnostics and treatments. Since their properties can be modified and adjusted for the desired use, they have many different potential applications in medicine: they can be used in diagnosis because of their ability to be loaded with dyes and their increased selectivity and sensitivity, which can improve the quality of the diagnostic process. SiNPs can be functionalized by targeting ligands or molecules to detect certain cellular processes or biomarkers with better precision. Targeted delivery is another fundamental use of SiNPs. They could be used as drug delivery systems (DDS) since their structure allows the loading of therapeutic agents or other compounds, and studies have demonstrated their biocompatibility. When SiNPs are used as DDS, the drug's toxicity and the off-target effects are reduced significantly, and they can be used to treat conditions like cancer and neurological diseases and even aid in regenerative processes, such as wound healing or bone repair. However, safety concerns must be considered before SiNPs can be used extensively in clinical practice because NPs can cause toxicity in certain conditions and accumulate at undesired locations. Therefore, an overview of the potential applications that SiNPs could have in medicine, as well as their safety concerns, will be covered in this review paper.
Collapse
Affiliation(s)
- Carmen Larisa Nicolae
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
5
|
Ao LH, Wei YG, Tian HR, Zhao H, Li J, Ban JQ. Advances in the study of silica nanoparticles in lung diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169352. [PMID: 38110102 DOI: 10.1016/j.scitotenv.2023.169352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Silicon dioxide nanoparticles (SiNPs) are one of the major forms of silicon dioxide and are composed of the most-abundant compounds on earth. Based on their excellent properties, SiNPs are widely used in food production, synthetic processes, medical diagnostics, drug delivery, and other fields. The mass production and wide application of SiNPs increases the risk of human exposure to SiNPs. In the workplace and environment, SiNPs mainly enter the human body through the respiratory tract and reach the lungs; therefore, the lungs are the most important and most toxicologically affected target organ of SiNPs. An increasing number of studies have shown that SiNP exposure can cause severe lung toxicity. However, studies on the toxicity of SiNPs in ex vivo and in vivo settings are still in the exploratory phase. The molecular mechanisms underlying the lung toxicity of SiNPs are varied and not yet fully understood. As a result, this review summarizes the possible mechanisms of SiNP-induced lung toxicity, such as oxidative stress, endoplasmic reticulum stress, mitochondrial damage, and cell death. Moreover, this study provides a summary of the progression of diseases caused by SiNPs, thereby establishing a theoretical basis for future studies on the mechanisms of SiNP-induced lung toxicity.
Collapse
Affiliation(s)
- Li-Hong Ao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun-Geng Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Ru Tian
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hua Zhao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jun Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jia-Qi Ban
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
6
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
7
|
Nady DS, Hassan A, Amin MU, Bakowsky U, Fahmy SA. Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics 2023; 16:14. [PMID: 38276492 PMCID: PMC10821275 DOI: 10.3390/pharmaceutics16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells.
Collapse
Affiliation(s)
- Doaa Sayed Nady
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| |
Collapse
|
8
|
Zou H, Ren Y. Synthetic strategies for nonporous organosilica nanoparticles from organosilanes. NANOSCALE 2023. [PMID: 37326150 DOI: 10.1039/d3nr00791j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organosilica nanoparticles refer to silica nanoparticles containing carbon along with organic or functional groups and can be divided into mesoporous organosilica nanoparticles and nonporous organosilica nanoparticles. During the past few decades, considerable efforts have been devoted to the development of organosilica nanoparticles directly from organosilanes. However, most of the reports have focused on mesoporous organosilica nanoparticles, while relatively few are concerned with nonporous organosilica nanoparticles. The synthesis of nonporous organosilica nanoparticles typically involves (i) self-condensation of an organosilane as the single source, (ii) co-condensation of two or more types of organosilanes, (iii) co-condensation of tetraalkoxysilane and an organosilane, and (iv) spontaneous emulsification and the subsequent radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TPM). This article aims to provide a review on the synthetic strategies of this important type of colloidal particle, followed by a brief discussion on their applications and future perspectives.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Yuhang Ren
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
9
|
Nakamura M, Mochizuki C, Kuroda C, Shiohama Y, Nakamura J. Size effect of fluorescent thiol-organosilica particles on their distribution in the mouse spleen. Colloids Surf B Biointerfaces 2023; 228:113397. [PMID: 37348267 DOI: 10.1016/j.colsurfb.2023.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
We investigated the distribution of intravenously administered thiol-organosilica particle (thiol-OS) in the spleen to evaluate their size effect in mice. A single administration of particles of thiol-OS containing rhodamine B (Rh) (90, 280, 340, 450, 630, 1110, 1670, and 3030 nm in diameter) was performed. After 24 h, we conducted a combination analysis using histological studies by fluorescent microscopy and quantitative inductively coupled plasma optical emission spectrometry (ICP-OES), which revealed no clear correlation between the particle size and spleen uptake of particle weight and number per tissue weight, and the injection dose. Moreover, Rh with 450 nm diameter (Rh450) showed the highest uptake, and Rh with 340 nm diameter (Rh340) showed the lowest uptake. Histologically, large fluorescent areas in the marginal zone (MZ) and red pulp (RP) of the spleen were observed for all particle sizes, but less in the follicle of white pulp. Using combination analysis using the particle weights of ICP-OES and the fluorescent area, we compared the distributions of each particle in each region. Rh450 had the largest accumulated weight in the MZ and RP. Particles larger than Rh450 showed negative correlations between their sizes and accumulated weight in the MZ and RP. Simultaneous dual administration of particles using Rhs and thiol-OS containing fluorescein (90 nm in diameter) showed the size-dependent difference in cellular distribution and intracellular localization. Immunohistochemical staining against macrophage markers, CD169, and F4/80 showed various colocalization patterns with macrophages that uptook particles, indicating differences in particle uptake in each macrophage may have novel significance.
Collapse
Affiliation(s)
- Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Chika Kuroda
- Yamaguchi University Faculty of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yasuo Shiohama
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
10
|
Nieddu M, Patrian M, Ferrara S, Fuenzalida Werner JP, Kohler F, Anaya‐Plaza E, Kostiainen MA, Dietz H, Berenguer JR, Costa RD. Core-Shell Structured Fluorescent Protein Nanoparticles: New Paradigm Toward Zero-Thermal-Quenching in High-Power Biohybrid Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300069. [PMID: 37013464 PMCID: PMC10238177 DOI: 10.1002/advs.202300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Indexed: 06/04/2023]
Abstract
Stable and efficient high-power biohybrid light-emitting diodes (Bio-HLEDs) using fluorescent proteins (FPs) in photon downconverting filters have not been achieved yet, reaching best efficiencies of 130 lm W-1 stable for >5 h. This is related to the rise of the device temperature (70-80 °C) caused by FP-motion and quick heat-transmission in water-based filters, they lead to a strong thermal emission quenching followed by the quick chromophore deactivation via photoinduced H-transfer. To tackle both issues at once, this work shows an elegant concept of a new FP-based nanoparticle, in which the FP core is shielded by a SiO2 -shell (FP@SiO2 ) with no loss of the photoluminescence figures-of-merit over years in foreign environments: dry powder at 25 °C (ambient) or constant 50 °C, as well as suspensions in organic solvents. This enables the preparation of water-free photon downconverting coatings with FP@SiO2 , realizing on-chip high-power Bio-HLEDs with 100 lm W-1 stable for >120 h. Both thermal emission quenching and H-transfer deactivation are suppressed, since the device temperature holds <40 °C and remote high-power Bio-HLEDs exhibit final stabilities of 130 days compared to reference devices with water-based FP@SiO2 (83 days) and FP-polymer coatings (>100 h). Hence, FP@SiO2 is a new paradigm toward water-free zero-thermal-quenching biophosphors for first-class high-power Bio-HLEDs.
Collapse
Affiliation(s)
- Mattia Nieddu
- Chair of Biogenic Functional MaterialsTechnical University of MunichSchulgasse, 2294315StraubingGermany
| | - Marta Patrian
- Chair of Biogenic Functional MaterialsTechnical University of MunichSchulgasse, 2294315StraubingGermany
| | - Sara Ferrara
- Chair of Biogenic Functional MaterialsTechnical University of MunichSchulgasse, 2294315StraubingGermany
| | | | - Fabian Kohler
- Laboratory for Biomolecular NanotechnologyDepartment of PhysicsTechnical University of MunichAm Coulombwall 4a85748GarchingGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 115748GarchingGermany
| | - Eduardo Anaya‐Plaza
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityKemistintie 1Espoo02150Finland
| | - Mauri A. Kostiainen
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityKemistintie 1Espoo02150Finland
| | - Hendrik Dietz
- Laboratory for Biomolecular NanotechnologyDepartment of PhysicsTechnical University of MunichAm Coulombwall 4a85748GarchingGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 115748GarchingGermany
| | - Jesús Rubén Berenguer
- Departamento de Química‐Centro de Investigación en Síntesis Química (CISQ)Universidad de La RiojaMadre de Dios 53LogroñoE‐26006Spain
| | - Rubén D. Costa
- Chair of Biogenic Functional MaterialsTechnical University of MunichSchulgasse, 2294315StraubingGermany
| |
Collapse
|
11
|
Li T, Wu M, Wei Q, Xu D, He X, Wang J, Wu J, Chen L. Conjugated Polymer Nanoparticles for Tumor Theranostics. Biomacromolecules 2023; 24:1943-1979. [PMID: 37083404 DOI: 10.1021/acs.biomac.2c01446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Water-dispersible conjugated polymer nanoparticles (CPNs) have demonstrated great capabilities in biological applications, such as in vitro cell/subcellular imaging and biosensing, or in vivo tissue imaging and disease treatment. In this review, we summarized the recent advances of CPNs used for tumor imaging and treatment during the past five years. CPNs with different structures, which have been applied to in vivo solid tumor imaging (fluorescence, photoacoustic, and dual-modal) and treatment (phototherapy, drug carriers, and synergistic therapy), are discussed in detail. We also demonstrated the potential of CPNs as cancer theranostic nanoplatforms. Finally, we discussed current challenges and outlooks in this field.
Collapse
Affiliation(s)
- Tianyu Li
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Mengqi Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Qidong Wei
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, SAR, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
12
|
Mochizuki C, Nakamura J, Nakamura M. Effects of Au States in Thiol-Organosilica Nanoparticles on Enzyme-like Activity for X-ray Sensitizer Application: Focus on Reactive Oxygen Species Generation in Radiotherapy. ACS OMEGA 2023; 8:9569-9582. [PMID: 36936283 PMCID: PMC10018706 DOI: 10.1021/acsomega.3c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In radiotherapy, the use of Au nanoparticles (Au NPs) has been proposed to enhance cell damage by X-ray irradiation. Although the role of Au in radiotherapy is not fully understood, the catalytic activity of Au has been actively studied in the industrial field. Moreover, owing to their enzyme-like activity and high biocompatibility in vitro and in vivo, Au NPs present significant potential for biological applications. In this study, we incorporated different Au states both on the surface and embedded in thiol-organosilica (thiol-OS/Au series) to investigate the efficiency of anticancer cell activity of Au in radiotherapy. The thiol-OS/Au series comprised different Au(I)/Au(0) ratios and Au NPs, and different sizes of Au NPs were embedded in thiol-OS/Au. These thiol-OS/Au series samples were evaluated for enzyme-like activities in reactive oxygen species (ROS) generation by X-ray irradiation. Thiol-OS/Au embedded with small Au NPs (AC600/thiol-OS/Au) exhibited peroxidase (POD)-like activity under acidic conditions. This POD-like activity improved ROS generation and cytotoxicity under X-ray irradiation. Furthermore, AC600/thiol-OS/Au exhibited catalase (CAT)-like activity under basic conditions and showed no cytotoxicity toward nonirradiated cells. These results revealed the efficiency of functionalizing with small Au NPs that possess pH-controlled POD- and CAT-like activity as a radiosensitizer. We compared the suitability of using Au with different states to obtain the thiol-OS/Au series samples for application as radiosensitizers. The findings of this study will aid the design of efficacious strategies for the Au nanostructure-based radiotherapy of cancer cells.
Collapse
Affiliation(s)
- Chihiro Mochizuki
- Department of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
13
|
New approaches for enhancing the photosensitivity, antibacterial activity, and controlled release behavior of non-porous silica-titania nanoplatforms. BIOMATERIALS ADVANCES 2023; 148:213365. [PMID: 36921460 DOI: 10.1016/j.bioadv.2023.213365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
This research presents a new approach for the synthesis of inorganic nano-platforms containing >2 layers. Nano-platforms were characterized using scanning electron microscopy, X-ray diffraction, fluorescence and Fourier transform infrared spectroscopy, fluorescence microscopy, dynamic light scattering, thermogravimetric analysis, Brunauer-Emmett-Teller, etc. Since it has been reported that the maximum tolerable dose of non-porous silica nanoparticles (NPs) in in-vivo studies is higher than that of mesoporous silica, the non-porous silica was prepared. Curcumin (CUR) was trapped between the surfaces of the spherical non-porous silica and titania NPs (<100 nm) as both fluorescent and therapeutic agents, thus resulting in increased loading capacity of the non-porous silica NPs, as well as providing significant photosensitivity, antibacterial activity, and controlled release. In addition, the surface of NPs was enriched with Methyl violet-10B (MV-10B), and Rhodamine B (RhB). Silica@CUR@titania exhibited approximately 9-fold higher fluorescence intensity than silica@CUR NPs. This finding enabled us to design nano-platforms with minimum toxic effect due to low contents of RhB for bioimaging applications. The antimicrobial efficiency of nano-platforms was evaluated against P. aeruginosa, E. coli, S. typhimurium, K. pneumonia, S. epidermidis, S. aureus, B. subtilis, B. cereus, and E. faecalis. It was concluded that titania markedly lowered the minimum inhibitory concentration values (MICs) of CUR against all bacteria except B. subtilis and P. aeruginosa. Theoretical simulation was also performed to clarify the accumulation of functionalized NPs in tumor tissue.
Collapse
|
14
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Yang S, Dai W, Zheng W, Wang J. Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Raj R, Pinto SN, Crucho CIC, Das S, Baleizão C, Farinha JPS. Optically traceable PLGA-silica nanoparticles for cell-triggered doxorubicin delivery. Colloids Surf B Biointerfaces 2022; 220:112872. [PMID: 36179611 DOI: 10.1016/j.colsurfb.2022.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Fluorescent silica nanoparticles with a polymer shell of poly (D, L-lactide-co-glycolide) (PLGA) can provide traceable cell-triggered delivery of the anticancer drug doxorubicin (DOX), protecting the cargo while in transit and releasing it only intracellularly. PLGA with 50:50 lactide:glycolide ratio was grown by surface-initiated ring-opening polymerization (ROP) from silica nanoparticles of ca. 50 nm diameter, doped with a perylenediimide (PDI) fluorescent dye anchored to the silica structure. After loading DOX, release from the core-shell particles was evaluated in solution at physiological pH (7.4), and in human breast cancer cells (MCF-7) after internalization. The hybrid silica-PLGA nanoparticles can accommodate a large cargo of DOX, and the release in solution (PBS) due to PLGA hydrolysis is negligible for at least 72 h. However, once internalized in MCF-7 cells, the nanoparticles release the DOX cargo by degradation of the PLGA. Accumulation of DOX in the nucleus causes cell apoptosis, with the drug-loaded nanoparticles found to be as potent as free DOX. Our fluorescently traceable hybrid silica-PLGA nanoparticles with cell-triggered cargo release offer excellent prospects for the controlled delivery of anticancer drugs, protecting the cargo while in transit and efficiently releasing the drug once inside the cell.
Collapse
Affiliation(s)
- Ritu Raj
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| | - Sandra N Pinto
- iBB-Institute of Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Carina I C Crucho
- iBB-Institute of Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| | - Carlos Baleizão
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - José Paulo S Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
17
|
Dessale M, Mengistu G, Mengist HM. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine 2022; 17:3735-3749. [PMID: 36051353 PMCID: PMC9427008 DOI: 10.2147/ijn.s378074] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer remains the most devastating disease and the major cause of mortality worldwide. Although early diagnosis and treatment are the key approach in fighting against cancer, the available conventional diagnostic and therapeutic methods are not efficient. Besides, ineffective cancer cell selectivity and toxicity of traditional chemotherapy remain the most significant challenge. These limitations entail the need for the development of both safe and effective cancer diagnosis and treatment options. Due to its robust application, nanotechnology could be a promising method for in-vivo imaging and detection of cancer cells and cancer biomarkers. Nanotechnology could provide a quick, safe, cost-effective, and efficient method for cancer management. It also provides simultaneous diagnosis and treatment of cancer using nano-theragnostic particles that facilitate early detection and selective destruction of cancer cells. Updated and recent discussions are important for selecting the best cancer diagnosis, treatment, and management options, and new insights on designing effective protocols are utmost important. This review discusses the application of nanotechnology in cancer diagnosis, therapeutics, and theragnosis and provides future perspectives in the field.
Collapse
Affiliation(s)
- Mesfin Dessale
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | - Getachew Mengistu
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | | |
Collapse
|
18
|
Mochizuki C, Nakamura J, Nakamura M. Preparation of Fetal Bovine Serum-Copper Phosphate Hybrid Particles under Cell Culture Conditions for Cancer Cell Treatment. ACS OMEGA 2022; 7:29495-29501. [PMID: 36033705 PMCID: PMC9404488 DOI: 10.1021/acsomega.2c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Fetal bovine serum (FBS) particles, which mainly consist of bovine serum albumin, have the potential for biological and medical applications as drug carriers. The coacervation of albumin is a common technique for preparing albumin-based particles. The replacement of salt with novel metal salts such as Cu is an affordable way to embed the metal ion in the albumin-based particles. Further, increased Cu distribution is prevalent in many cancers. Here, we prepared adhesive cell-like FBS-copper phosphate hybrid particles [FBS-Cu3(PO4)2], which exhibited toxicity toward cancer cells, with a narrow size distribution under cell culture conditions for preventing tumor progression. FBS-Cu3(PO4)2 showed peroxidase-like activity. In addition, FBS-Cu3(PO4)2 was successfully loaded with rhodamine B and conjugated with fluorescein isothiocyanate as models of drugs by coincubation. Thus, we designed a simple preparation method for optimizing FBS-Cu3(PO4)2 synthesis under cell culture conditions. FBS-Cu3(PO4)2 has significant potential as an efficient reactive oxygen species generator and drug-delivery agent against cancer cells. Furthermore, the RhoB-loaded FBS-Cu3(PO4)2 successfully interacted with 4T1 mouse mammary tumor cells and were confirmed to exhibit toxicity.
Collapse
Affiliation(s)
- Chihiro Mochizuki
- Department
of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core
Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department
of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core
Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Michihiro Nakamura
- Department
of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core
Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
19
|
Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, Fu X, Wang X, Luo R, Wang R, Zhang Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother 2022; 151:113053. [PMID: 35594717 DOI: 10.1016/j.biopha.2022.113053] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Silica nanoparticles (SiNPs) are composed of silicon dioxide, the most abundant compound on Earth, and are used widely in many applications including the food industry, synthetic processes, medical diagnosis, and drug delivery due to their controllable particle size, large surface area, and great biocompatibility. Building on basic synthetic methods, convenient and economical strategies have been developed for the synthesis of SiNPs. Numerous studies have assessed the biomedical applications of SiNPs, including the surface and structural modification of SiNPs to target various cancers and diagnose diseases. However, studies on the in vitro and in vivo toxicity of SiNPs remain in the exploratory stage, and the toxicity mechanisms of SiNPs are poorly understood. This review covers recent studies on the biomedical applications of SiNPs, including their uses in drug delivery systems to diagnose and treat various diseases in the human body. SiNP toxicity is discussed in terms of the different systems of the human body and the individual organs in those systems. This comprehensive review includes both fundamental discoveries and exploratory progress in SiNP research that may lead to practical developments in the future.
Collapse
Affiliation(s)
- Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Peng Li
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264005, Shandong, PR China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaojie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rongrui Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
20
|
Nakamura M, Nakamura J, Mochizuki C, Kuroda C, Kato S, Haruta T, Kakefuda M, Sato S, Tamanoi F, Sugino N. Analysis of cell-nanoparticle interactions and imaging of in vitro labeled cells showing barcorded endosomes using fluorescent thiol-organosilica nanoparticles surface-functionalized with polyethyleneimine. NANOSCALE ADVANCES 2022; 4:2682-2703. [PMID: 36132282 PMCID: PMC9417756 DOI: 10.1039/d1na00839k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Biomedical imaging using cell labeling is an important technique to visualize cell dynamics in the body. To label cells, thiol-organosilica nanoparticles (thiol-OS) containing fluorescein (thiol-OS/Flu) and rhodamine B (thiol-OS/Rho) were surface-functionalized with polyethyleneimine (PEI) (OS/Flu-PEI and OS/Rho-PEI) with 4 molecular weights (MWs). We hypothesized PEI structures such as brush, bent brush, bent lie-down, and coiled types on the surface depending on MWs based on dynamic light scattering and thermal gravimetric analyses. The labeling efficacy of OS/Flu-PEIs was dependent on the PEI MW and the cell type. A dual-particle administration study using thiol-OS and OS-PEIs revealed differential endosomal sorting of the particles depending on the surface of the NPs. The endosomes in the labeled cells using OS/Flu-PEI and thiol-OS/Rho revealed various patterns of fluorescence termed barcoded endosomes. The cells labeled with OS-PEI in vitro were administrated to mice intraperitoneally after in situ labeling of peritoneal cells using thiol-OS/Rho. The in vitro labeled cells were detected and identified in cell aggregates in vivo seamlessly. The labeled cells with barcoded endosomes were also identified in cell aggregates. Biomedical imaging of in vitro OS-PEI-labeled cells combined with in situ labeled cells showed high potential for observation of cell dynamics.
Collapse
Affiliation(s)
- Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chika Kuroda
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Shigeki Kato
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | | | - Mayu Kakefuda
- EM Application Group, EM Business Unit, JEOL Ltd. Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles CA 90095 USA
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| |
Collapse
|
21
|
Functionalized Mesoporous Silica as Doxorubicin Carriers and Cytotoxicity Boosters. NANOMATERIALS 2022; 12:nano12111823. [PMID: 35683677 PMCID: PMC9182127 DOI: 10.3390/nano12111823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption–desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustained release trend. The in vitro cytotoxicity was evaluated on NDHF, MeWo and HeLa cell lines by CellTiter-Glo assay, revealing strong cytotoxic effects in all of the loaded silica at low equivalent Dox concentration and selectivity for cancer cells. Atypical applications of each MSN as intravaginal, topical or oral Dox administration route could be proposed.
Collapse
|
22
|
Mochizuki C, Kayabe Y, Nakamura J, Igase M, Mizuno T, Nakamura M. Surface Functionalization of Organosilica Nanoparticles With Au Nanoparticles Inhibits Cell Proliferation and Induces Cell Death in 4T1 Mouse Mammary Tumor Cells for DNA and Mitochondrial-Synergized Damage in Radiotherapy. Front Chem 2022; 10:907642. [PMID: 35620651 PMCID: PMC9127317 DOI: 10.3389/fchem.2022.907642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective cancer treatments. Au nanoparticles (NPs) are one of the most used X-ray sensitizing materials however the effective small sub-nm size of Au NPs used for X-ray sensitizers is disadvantageous for cellular uptake. Here, we propose the surface functionalization of organosilica NPs (OS) with Au NPs (OS/Au), which combined the 100 nm size of OS and the sub-nm size of Au NPs, and synthesized effective Au materials as an X-ray sensitizer. The X-ray sensitizing potential for 4T1 mouse mammary tumor cells was revealed using a multifaceted evaluation combined with a fluorescence microscopic cell imaging assay. The number of polyethyleneimine (PEI)-modified OS (OS/PEI) and OS/Au (OS/Au/PEI) uptake per 4T1 mouse mammary tumor cell was the same; however, 4T1 cells treated with OS/Au/PEI exhibited significant inhibition of cell proliferation and increases in cell death by X-ray irradiation at 8Gy. The non-apoptotic death of OS/Au/PEI-treated 4T1 cells was increased by DNA and mitochondrial-synergized damage increase and showed potential applications in radiotherapy.
Collapse
Affiliation(s)
- Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, Yamaguchi, Japan
| | - Yukihito Kayabe
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, Yamaguchi, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
23
|
Gao Y, Zhang Y, Hong Y, Wu F, Shen L, Wang Y, Lin X. Multifunctional Role of Silica in Pharmaceutical Formulations. AAPS PharmSciTech 2022; 23:90. [PMID: 35296944 DOI: 10.1208/s12249-022-02237-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the high surface area, adjustable surface and pore structures, and excellent biocompatibility, nano- and micro-sized silica have certainly attracted the attention of many researchers in the medical fields. This review focuses on the multifunctional roles of silica in different pharmaceutical formulations including solid preparations, liquid drugs, and advanced drug delivery systems. For traditional solid preparations, it can improve compactibility and flowability, promote disintegration, adjust hygroscopicity, and prevent excessive adhesion. As for liquid drugs and preparations, like volatile oil, ethers, vitamins, and self-emulsifying drug delivery systems, silica with adjustable pore structures is a good adsorbent for solidification. Also, silica with various particle sizes, surface characteristics, pore structure, and surface modification controlled by different synthesis methods has gained wide attention owing to its unparalleled advantages for drug delivery and disease diagnosis. We also collate the latest pharmaceutical applications of silica sorted out by formulations. Finally, we point out the thorny issues for application and survey future trends pertaining to silica in an effort to provide a comprehensive overview of its future development in the medical fields. Graphical Abstract.
Collapse
|
24
|
Yilmaz B, Ozay O. Synthesis of antibiotic-modified silica nanoparticles and their use as a controlled drug release system with antibacterial properties. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2049267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Betul Yilmaz
- Department of Bioengineering and Materials Engineering, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ozgur Ozay
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
25
|
Komatsu S, Terui K, Nakata M, Shibata R, Oita S, Kawaguchi Y, Yoshizawa H, Hirokawa T, Nakatani E, Hishiki T. Combined Use of Three-Dimensional Construction and Indocyanine Green-Fluorescent Imaging for Resection of Multiple Lung Metastases in Hepatoblastoma. CHILDREN 2022; 9:children9030376. [PMID: 35327748 PMCID: PMC8947451 DOI: 10.3390/children9030376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
It is essential to accurately and safely resect all tumors during surgery for multiple lung metastases. Here, we report a case of hepatoblastoma (HB) with multiple pulmonary nodules that ultimately underwent complete resection using combined three-dimensional image reconstruction and indocyanine green (ICG) fluorescence guidance. A 1-year-old boy was diagnosed with HB and multiple lung metastases. After intensive chemotherapy, complete resection with subsegmentectomy (S5 + 6) and partial resection (S3, S8) were performed. More than 100 pulmonary nodules, which remained visible on computed tomography (CT) despite additional postoperative chemotherapy, were subjected to pulmonary resection. We used the SYNAPSE VINCENT software (Fujifilm Medical, Tokyo, Japan) to obtain three-dimensional images of the nodules. We numbered each nodule, and 33 lesions of the right lung were resected by multiple wedge resections through a right thoracotomy, with the aid of palpation and ICG fluorescence guidance. One month after the right metastasectomy, resection of 64 lesions in the left lung was performed via left thoracotomy. Postoperative CT showed complete clearance of the lung lesions, and the patient remained disease-free for 15 months after the treatment. This case study confirms that the combination of three-dimensional localization and ICG fluorescence guidance allows for accurate and safe resection of nearly 100 lung metastases.
Collapse
|
26
|
Baghbanbashi M, Pazuki G, Khoee S. One Pot Silica Nanoparticle Modification and Doxorubicin Encapsulation as pH-Responsive Nanocarriers, Applying PEG/Lysine Aqueous Two Phase System. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
28
|
Liu Y, Chen Y, Fei W, Zheng C, Zheng Y, Tang M, Qian Y, Zhang X, Zhao M, Zhang M, Wang F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front Bioeng Biotechnol 2021; 9:733792. [PMID: 34557478 PMCID: PMC8452863 DOI: 10.3389/fbioe.2021.733792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Silica-based nanoframeworks have been extensively studied for diagnosing and treating hepatocellular carcinoma (HCC). Several reviews have summarized the advantages and disadvantages of these nanoframeworks and their use as drug-delivery carriers. Encouragingly, these nanoframeworks, especially those with metal elements or small molecular drugs doping into the skeleton structure or modifying onto the surface of nanoparticles, could be multifunctional components participating in HCC diagnosis and treatment rather than functioning only as drug-delivery carriers. Therefore, in this work, we described the research progress of silica-based nanoframeworks involved in HCC diagnosis (plasma biomarker detection, magnetic resonance imaging, positron emission tomography, photoacoustic imaging, fluorescent imaging, ultrasonography, etc.) and treatment (chemotherapy, ferroptotic therapy, radiotherapy, phototherapy, sonodynamic therapy, immunotherapy, etc.) to clarify their roles in HCC theranostics. Further, the future expectations and challenges associated with silica-based nanoframeworks were highlighted. We believe that this review will provide a comprehensive understanding for researchers to design novel, functional silica-based nanoframeworks that can effectively overcome HCC.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Alghuthaymi MA, Hassan AA, Kalia A, Sayed El Ahl RMH, El Hamaky AAM, Oleksak P, Kuca K, Abd-Elsalam KA. Antifungal Nano-Therapy in Veterinary Medicine: Current Status and Future Prospects. J Fungi (Basel) 2021; 7:494. [PMID: 34206304 PMCID: PMC8303737 DOI: 10.3390/jof7070494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The global recognition for the potential of nanoproducts and processes in human biomedicine has given impetus for the development of novel strategies for rapid, reliable, and proficient diagnosis, prevention, and control of animal diseases. Nanomaterials exhibit significant antifungal and antimycotoxin activities against mycosis and mycotoxicosis disorders in animals, as evidenced through reports published over the recent decade and more. These nanoantifungals can be potentially utilized for the development of a variety of products of pharmaceutical and biomedical significance including the nano-scale vaccines, adjuvants, anticancer and gene therapy systems, farm disinfectants, animal husbandry, and nutritional products. This review will provide details on the therapeutic and preventative aspects of nanoantifungals against diverse fungal and mycotoxin-related diseases in animals. The predominant mechanisms of action of these nanoantifungals and their potential as antifungal and cytotoxicity-causing agents will also be illustrated. Also, the other theragnostic applications of nanoantifungals in veterinary medicine will be identified.
Collapse
Affiliation(s)
- Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 19245, Saudi Arabia;
| | - Atef A. Hassan
- Department of Mycology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), 12611 Giza, Egypt; (A.A.H.); (R.M.H.S.E.A.); (A.A.M.E.H.)
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, India
| | - Rasha M. H. Sayed El Ahl
- Department of Mycology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), 12611 Giza, Egypt; (A.A.H.); (R.M.H.S.E.A.); (A.A.M.E.H.)
| | - Ahmed A. M. El Hamaky
- Department of Mycology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), 12611 Giza, Egypt; (A.A.H.); (R.M.H.S.E.A.); (A.A.M.E.H.)
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., 12619 Giza, Egypt
| |
Collapse
|