1
|
Mozafari MR. Editorial to the Special Issue "Theranostic Drug Delivery: Prospects and Problems". Biomedicines 2024; 12:1533. [PMID: 39062106 PMCID: PMC11274609 DOI: 10.3390/biomedicines12071533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The technical phrase theragnostic (also known as theranostic) was first introduced to the scientific community in the year 1998 by John Funkhouser, to describe a methodology or procedure employed to achieve disease diagnosis and treatment simultaneously [...].
Collapse
Affiliation(s)
- M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8031 Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Oloo SO, Smith KM, Vicente MDGH. Multi-Functional Boron-Delivery Agents for Boron Neutron Capture Therapy of Cancers. Cancers (Basel) 2023; 15:3277. [PMID: 37444386 DOI: 10.3390/cancers15133277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary cancer treatment that involves the irradiation of 10B-containing tumors with low-energy neutrons (thermal or epithermal). The alpha particles and recoiling Li nuclei that are produced in the 10B-capture nuclear reaction are high-linear-energy transfer particles that destroy boron-loaded tumor cells; therefore, BNCT has the potential to be a localized therapeutic modality. Two boron-delivery agents have been used in clinical trials of BNCT in patients with malignant brain tumors, cutaneous melanoma, or recurrent tumors of the head and neck region, demonstrating the potential of BNCT in the treatment of difficult cancers. A variety of potentially highly effective boron-delivery agents have been synthesized in the past four decades and tested in cells and animal models. These include boron-containing nucleosides, peptides, proteins, polyamines, porphyrins, liposomes, monoclonal antibodies, and nanoparticles of various types. The most promising agents are multi-functional boronated molecules and nanoparticles functionalized with tumor cell-targeting moieties that increase their tumor selectivity and contain a radiolabel or fluorophore to allow quantification of 10B-biodistribution and treatment planning. This review discusses multi-functional boron agents reported in the last decade, but their full potential can only be ascertained after their evaluation in BNCT clinical trials.
Collapse
Affiliation(s)
- Sebastian O Oloo
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
3
|
Raskolupova VI, Wang M, Dymova MA, Petrov GO, Shchudlo IM, Taskaev SY, Abramova TV, Godovikova TS, Silnikov VN, Popova TV. Design of the New Closo-Dodecarborate-Containing Gemcitabine Analogue for the Albumin-Based Theranostics Composition. Molecules 2023; 28:molecules28062672. [PMID: 36985644 PMCID: PMC10056911 DOI: 10.3390/molecules28062672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Combination therapy is becoming an increasingly important treatment strategy because multi-drugs can maximize therapeutic effect and overcome potential mechanisms of drug resistance. A new albumin-based theranostic containing gemcitabine closo-dodecaborate analogue has been developed for combining boron neutron capture therapy (BNCT) and chemotheraphy. An exo-heterocyclic amino group of gemcitabine was used to introduce closo-dodecaborate, and a 5′-hydroxy group was used to tether maleimide moiety through an acid-labile phosphamide linker. The N-trifluoroacylated homocysteine thiolactone was used to attach the gemcitabine analogue to human serum albumin (HSA) bearing Cy5 or Cy7 fluorescent dyes. The half-maximal inhibitory concentration (IC50) of the designed theranostic relative to T98G cells was 0.47 mM with the correlation coefficient R = 0.82. BNCT experiments resulted in a decrease in the viability of T98G cells, and the survival fraction was ≈ 0.4.
Collapse
Affiliation(s)
- Valeria I. Raskolupova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Meiling Wang
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Gleb O. Petrov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Ivan M. Shchudlo
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergey Yu. Taskaev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana V. Abramova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana S. Godovikova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir N. Silnikov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana V. Popova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +8-383-3635183
| |
Collapse
|
4
|
Ailuno G, Balboni A, Caviglioli G, Lai F, Barbieri F, Dellacasagrande I, Florio T, Baldassari S. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells 2022; 11:cells11244029. [PMID: 36552793 PMCID: PMC9776957 DOI: 10.3390/cells11244029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Boron neutron capture therapy is a low-invasive cancer therapy based on the neutron fission process that occurs upon thermal neutron irradiation of 10B-containing compounds; this process causes the release of alpha particles that selectively damage cancer cells. Although several clinical studies involving mercaptoundecahydro-closo-dodecaborate and the boronophenylalanine-fructose complex are currently ongoing, the success of this promising anticancer therapy is hampered by the lack of appropriate drug delivery systems to selectively carry therapeutic concentrations of boron atoms to cancer tissues, allowing prolonged boron retention therein and avoiding the damage of healthy tissues. To achieve these goals, numerous research groups have explored the possibility to formulate nanoparticulate systems for boron delivery. In this review. we report the newest developments on boron vehiculating drug delivery systems based on nanoparticles, distinguished on the basis of the type of carrier used, with a specific focus on the formulation aspects.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| | | | - Francesco Lai
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, 09124 Cagliari, Italy
| | - Federica Barbieri
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | | | - Tullio Florio
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| |
Collapse
|
5
|
Abstract
Magnetic nanoparticles (MNPs) have great potential in biochemistry and medical science. In particular, iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications due to their high magnetic properties, large surface area, stability, and easy functionalization. However, colloidal stability, biocompatibility, and potential toxicity of MNPs in physiological environments are crucial for their in vivo application. In this context, many research articles focused on the possible procedures for MNPs coating to improve their physic-chemical and biological properties. This review highlights one viable fabrication strategy of biocompatible iron oxide nanoparticles using human serum albumin (HSA). HSA is mainly a transport protein with many functions in various fundamental processes. As it is one of the most abundant plasma proteins, not a single drug in the blood passes without its strength test. It influences the stability, pharmacokinetics, and biodistribution of different drug-delivery systems by binding or forming its protein corona on the surface. The development of albumin-based drug carriers is gaining increasing importance in the targeted delivery of cancer therapy. Considering this, HSA is a highly potential candidate for nanoparticles coating and theranostics area and can provide biocompatibility, prolonged blood circulation, and possibly resolve the drug-resistance cancer problem.
Collapse
|
6
|
Popova T, Dymova MA, Koroleva LS, Zakharova OD, Lisitskiy VA, Raskolupova VI, Sycheva T, Taskaev S, Silnikov VN, Godovikova TS. Homocystamide Conjugates of Human Serum Albumin as a Platform to Prepare Bimodal Multidrug Delivery Systems for Boron Neutron Capture Therapy. Molecules 2021; 26:molecules26216537. [PMID: 34770947 PMCID: PMC8586956 DOI: 10.3390/molecules26216537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Boron neutron capture therapy is a unique form of adjuvant cancer therapy for various malignancies including malignant gliomas. The conjugation of boron compounds and human serum albumin (HSA)-a carrier protein with a long plasma half-life-is expected to extend systemic circulation of the boron compounds and increase their accumulation in human glioma cells. We report on the synthesis of fluorophore-labeled homocystamide conjugates of human serum albumin and their use in thiol-'click' chemistry to prepare novel multimodal boronated albumin-based theranostic agents, which could be accumulated in tumor cells. The novelty of this work involves the development of the synthesis methodology of albumin conjugates for the imaging-guided boron neutron capture therapy combination. Herein, we suggest using thenoyltrifluoroacetone as a part of an anticancer theranostic construct: approximately 5.4 molecules of thenoyltrifluoroacetone were bound to each albumin. Along with its beneficial properties as a chemotherapeutic agent, thenoyltrifluoroacetone is a promising magnetic resonance imaging agent. The conjugation of bimodal HSA with undecahydro-closo-dodecaborate only slightly reduced human glioma cell line viability in the absence of irradiation (~30 μM of boronated albumin) but allowed for neutron capture and decreased tumor cell survival under epithermal neutron flux. The simultaneous presence of undecahydro-closo-dodecaborate and labeled amino acid residues (fluorophore dye and fluorine atoms) in the obtained HSA conjugate makes it a promising candidate for the combination imaging-guided boron neutron capture therapy.
Collapse
Affiliation(s)
- Tatyana Popova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maya A Dymova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Ludmila S Koroleva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Olga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir A Lisitskiy
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Valeria I Raskolupova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergei Taskaev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana S Godovikova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Raskolupova VI, Popova TV, Zakharova OD, Nikotina AE, Abramova TV, Silnikov VN. Human Serum Albumin Labelling with a New BODIPY Dye Having a Large Stokes Shift. Molecules 2021; 26:2679. [PMID: 34063643 PMCID: PMC8124464 DOI: 10.3390/molecules26092679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
BODIPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials, and molecular probes. At the same time, BODIPY dyes have small or moderate Stokes shifts like most other fluorophores. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. The new boron containing BODIPY dye was designed and synthesized. We succeeded to perform an annulation of pyrrole ring with coumarin heterocyclic system and achieved a remarkable difference in absorption and emission maximum of obtained fluorophore up to 100 nm. This BODIPY dye was equipped with linker arm and was functionalized with a maleimide residue specifically reactive towards thiol groups of proteins. BODIPY residue equipped with a suitable targeting protein core can be used as a suitable imaging probe and agent for Boron Neutron Capture Therapy (BNCT). As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal constructions. The released sulfhydryl groups of the homocysteine functional handle in thiolactone modified HSA were labeled with BODIPY dye to prepare a labeled albumin-BODIPY dye conjugate confirmed by MALDI-TOF-MS, UV-vis, and fluorescent emission spectra. Cytotoxicity of the resulting conjugate was investigated. This study is the basis for a novel BODIPY dye-albumin theranostic for BNCT. The results provide further impetus to develop derivatives of HSA for delivery of boron to cancer cells.
Collapse
Affiliation(s)
- Valeria I. Raskolupova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Popova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Anastasia E. Nikotina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Abramova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Vladimir N. Silnikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| |
Collapse
|