1
|
Gaudio A, Gotta F, Ponti C, Sanguineri F, Trevisan L, Geroldi A, Patrone S, Gemelli C, Cabona C, Astrea G, Fiorillo C, Gustincich S, Grandis M, Mandich P. Case report: Episodic ataxia without ataxia? Front Neurol 2023; 14:1224241. [PMID: 37965175 PMCID: PMC10640972 DOI: 10.3389/fneur.2023.1224241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Hereditary myopathies represent a clinically and genetically heterogeneous group of neuromuscular disorders, characterized by highly variable clinical presentations and frequently overlapping phenotypes with other neuromuscular disorders, likely influenced by genetic and environmental modifiers. Genetic testing is often challenging due to ambiguous clinical diagnosis. Here, we present the case of a family with clinical and Electromyography (EMG) features resembling a myotonia-like disorder in which Whole Exome Sequencing (WES) analysis revealed the co-segregation of two rare missense variants in UBR4 and HSPG2, genes previously associated with episodic ataxia 8 (EA8). A review of the literature highlighted a striking overlap between the clinical and the molecular features of our family and the previously described episodic ataxias (EAs), which raises concerns about the genotype-phenotype correlation, clinical variability, and the confounding overlap in these groups of disorders. This emphasizes the importance of thoroughly framing the patient's phenotype. The more clear-cut the diagnosis, the easier the identification of a genetic determinant, and the better the prognosis and the treatment of patients.
Collapse
Affiliation(s)
- Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
| | - Clarissa Ponti
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Francesca Sanguineri
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucia Trevisan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino—SS Centro Tumori Ereditari, Genova, Italy
| | - Alessandro Geroldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Serena Patrone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Chiara Gemelli
- IRCCS-Ospedale Policlinico San Martino—UOC Clinica Neurologica, Genova, Italy
| | - Corrado Cabona
- IRCCS-Ospedale Policlinico San Martino—UOC Neurofisiopatologia, Genova, Italy
| | | | - Chiara Fiorillo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Istituto Giannina Gaslini—UOC Neuropsichiatria Infantile, Genova, Italy
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS-Ospedale Policlinico San Martino—UOC Clinica Neurologica, Genova, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino—UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
2
|
Paulhus K, Glasscock E. Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of KCNA1 Channelopathy. Int J Mol Sci 2023; 24:8826. [PMID: 37240170 PMCID: PMC10219020 DOI: 10.3390/ijms24108826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The KCNA1 gene encodes Kv1.1 voltage-gated potassium channel α subunits, which are crucial for maintaining healthy neuronal firing and preventing hyperexcitability. Mutations in the KCNA1 gene can cause several neurological diseases and symptoms, such as episodic ataxia type 1 (EA1) and epilepsy, which may occur alone or in combination, making it challenging to establish simple genotype-phenotype correlations. Previous analyses of human KCNA1 variants have shown that epilepsy-linked mutations tend to cluster in regions critical for the channel's pore, whereas EA1-associated mutations are evenly distributed across the length of the protein. In this review, we examine 17 recently discovered pathogenic or likely pathogenic KCNA1 variants to gain new insights into the molecular genetic basis of KCNA1 channelopathy. We provide the first systematic breakdown of disease rates for KCNA1 variants in different protein domains, uncovering potential location biases that influence genotype-phenotype correlations. Our examination of the new mutations strengthens the proposed link between the pore region and epilepsy and reveals new connections between epilepsy-related variants, genetic modifiers, and respiratory dysfunction. Additionally, the new variants include the first two gain-of-function mutations ever discovered for KCNA1, the first frameshift mutation, and the first mutations located in the cytoplasmic N-terminal domain, broadening the functional and molecular scope of KCNA1 channelopathy. Moreover, the recently identified variants highlight emerging links between KCNA1 and musculoskeletal abnormalities and nystagmus, conditions not typically associated with KCNA1. These findings improve our understanding of KCNA1 channelopathy and promise to enhance personalized diagnosis and treatment for individuals with KCNA1-linked disorders.
Collapse
Affiliation(s)
| | - Edward Glasscock
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA;
| |
Collapse
|
3
|
Dinoi G, Morin M, Conte E, Mor Shaked H, Coppola MA, D’Adamo MC, Elpeleg O, Liantonio A, Hartmann I, De Luca A, Blunck R, Russo A, Imbrici P. Clinical and Functional Study of a De Novo Variant in the PVP Motif of Kv1.1 Channel Associated with Epilepsy, Developmental Delay and Ataxia. Int J Mol Sci 2022; 23:ijms23158079. [PMID: 35897654 PMCID: PMC9331732 DOI: 10.3390/ijms23158079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Mutations in the KCNA1 gene, encoding the voltage-gated potassium channel Kv1.1, have been associated with a spectrum of neurological phenotypes, including episodic ataxia type 1 and developmental and epileptic encephalopathy. We have recently identified a de novo variant in KCNA1 in the highly conserved Pro-Val-Pro motif within the pore of the Kv1.1 channel in a girl affected by early onset epilepsy, ataxia and developmental delay. Other mutations causing severe epilepsy are located in Kv1.1 pore domain. The patient was initially treated with a combination of antiepileptic drugs with limited benefit. Finally, seizures and ataxia control were achieved with lacosamide and acetazolamide. The aim of this study was to functionally characterize Kv1.1 mutant channel to provide a genotype–phenotype correlation and discuss therapeutic options for KCNA1-related epilepsy. To this aim, we transfected HEK 293 cells with Kv1.1 or P403A cDNAs and recorded potassium currents through whole-cell patch-clamp. P403A channels showed smaller potassium currents, voltage-dependent activation shifted by +30 mV towards positive potentials and slower kinetics of activation compared with Kv1.1 wild-type. Heteromeric Kv1.1+P403A channels, resembling the condition of the heterozygous patient, confirmed a loss-of-function biophysical phenotype. Overall, the functional characterization of P403A channels correlates with the clinical symptoms of the patient and supports the observation that mutations associated with severe epileptic phenotype cluster in a highly conserved stretch of residues in Kv1.1 pore domain. This study also strengthens the beneficial effect of acetazolamide and sodium channel blockers in KCNA1 channelopathies.
Collapse
Affiliation(s)
- Giorgia Dinoi
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (A.L.); (A.D.L.)
| | - Michael Morin
- Department of Physics, Université de Montréal, Montreal, QC H3C 3J7, Canada; (M.M.); (R.B.)
- CIRCA, Center for Interdisciplinary Research on Brain and Learning, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (A.L.); (A.D.L.)
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem 91120, Israel; (H.M.S.); (O.E.)
| | - Maria Antonietta Coppola
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (A.L.); (A.D.L.)
| | | | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem 91120, Israel; (H.M.S.); (O.E.)
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (A.L.); (A.D.L.)
| | - Inbar Hartmann
- Pediatric Neurology Clinic, Shamir Medical Center (Assaf Harofeh), Zerifin 7033001, Israel;
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (A.L.); (A.D.L.)
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montreal, QC H3C 3J7, Canada; (M.M.); (R.B.)
- CIRCA, Center for Interdisciplinary Research on Brain and Learning, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Angelo Russo
- Child Neurology Unit, IRCCS, Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy;
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (A.L.); (A.D.L.)
- Correspondence:
| |
Collapse
|
4
|
Maggi L, Bonanno S, Altamura C, Desaphy JF. Ion Channel Gene Mutations Causing Skeletal Muscle Disorders: Pathomechanisms and Opportunities for Therapy. Cells 2021; 10:cells10061521. [PMID: 34208776 PMCID: PMC8234207 DOI: 10.3390/cells10061521] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle ion channelopathies (SMICs) are a large heterogeneous group of rare genetic disorders caused by mutations in genes encoding ion channel subunits in the skeletal muscle mainly characterized by myotonia or periodic paralysis, potentially resulting in long-term disabilities. However, with the development of new molecular technologies, new genes and new phenotypes, including progressive myopathies, have been recently discovered, markedly increasing the complexity in the field. In this regard, new advances in SMICs show a less conventional role of ion channels in muscle cell division, proliferation, differentiation, and survival. Hence, SMICs represent an expanding and exciting field. Here, we review current knowledge of SMICs, with a description of their clinical phenotypes, cellular and molecular pathomechanisms, and available treatments.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Correspondence:
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| |
Collapse
|