1
|
Chen JC, Ou LS, Kuo ML, Tseng LY, Chang HL. Autoantigen Exposure in Murine Fetuses Elicited Nonpathogenic Autoimmunity. Arch Med Res 2024; 55:103013. [PMID: 38851050 DOI: 10.1016/j.arcmed.2024.103013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AND AIM Autoimmunity refers to the presence of autoantibodies and autoreactive lymphocytes against the structural molecules of an individual's cells or tissues, known as self-antigens or autoantigens. It might exist in the absence of autoimmune disease. However, how autoimmunity develops remains a mystery, despite the discovery of autoantibodies in human cord blood. METHODS Murine fetuses on day 14 of gestation were subjected to intraperitoneal injection of murine thyroid peroxidase (TPO) peptides or collagen type II (CII) at graded doses via transuterine approach. Postnatally, the recipients were examined for autoantibodies by ELISA and autoreactive lymphocytes by in vitro incorporation of tritium and for the development of autoimmune thyroiditis or arthritis. RESULTS At one month of age, the recipients did not secrete significant levels of anti-TPO or CII IgG2a in sera until a dose of 0.5 µg TPO or 5.0 µg CII was injected in utero. Serum anti-TPO or CII IgG2a persisted for at least two to four months postnatally. In recipients with elevated autoantibodies, their lymphocytes also showed proliferative responses specifically to TPO or CII. However, the development of autoantibodies and autoreactive lymphocytes was not associated with inflammatory cell infiltration of thyroid glands or paw joints even though anti-TPO or CII IgG2a was enhanced by postnatal TPO or CII challenge. CONCLUSION Fetal exposure to free autoantigens could be immunogenic, shedding new light on the in utero origin of autoantibodies and autoreactive lymphocytes. The development of autoimmunity requires a threshold intensity of autoantigen exposure in the fetus.
Collapse
Affiliation(s)
- Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Liang-Shiou Ou
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Yun Tseng
- Pediatric Research Center, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsueh-Ling Chang
- Pediatric Research Center, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Liu B, Zhang X, Ding X, Bin P, Zhu G. The vertical transmission of Salmonella Enteritidis in a One-Health context. One Health 2022; 16:100469. [PMID: 36507074 PMCID: PMC9731862 DOI: 10.1016/j.onehlt.2022.100469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) is a foodborne zoonotic pathogen, causing economic losses in animal husbandry and large numbers of human deaths and critically threatening economic development and public health. Human infection with SE has complex transmission routes, involving the environment, animal reservoirs, and water in a One-Health context. Food-producing animals, particularly poultry and livestock, are regarded as the most common sources of SE infection in humans. However, there is little known about the vertical transmission of SE in a One-Health context. In this review, we analyze the ecological significance of SE in a One-Health context. Importantly, we focus on the difference in vertical transmission of SE in poultry, livestock, and humans. We introduce the transmission pathway, describe the immune mechanisms, and discuss the models that could be used for studying the vertical transmission of SE and the strategy that prevention and control for vertical transmission of SE into the future from a One-Health perspective. Together, considering the vertical transmission of SE, it is helpful to provide important insights into the control and decontamination pathways of SE in animal husbandry and enhance knowledge about the prevention of fetal infection in human pregnancy.
Collapse
Affiliation(s)
- Baobao Liu
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaojie Zhang
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyan Ding
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Peng Bin
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China,Corresponding author at: College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Mutalik C, Okoro G, Krisnawati DI, Jazidie A, Rahmawati EQ, Rahayu D, Hsu WT, Kuo TR. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. J Colloid Interface Sci 2021; 607:1825-1835. [PMID: 34688975 DOI: 10.1016/j.jcis.2021.10.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023]
Abstract
Metal chalcogenides have been intensively investigated as antibacterial agents due to their unique structures and superior photoactivities. Herein, various structures of copper sulfide (CuS), a metal chalcogenide, such as microspheres (MSs), nanosheets (NSs), and nanoparticles (NPs), were developed in this work for antibacterial applications. A hydrothermal process was utilized to synthesize CuS MSs, CuS NSs, and CuS NPs. Under simulated solar light and near-infrared (NIR) light irradiation, the antibacterial behaviors, reactive oxygen species (ROS) production, and light-driven antibacterial mechanisms of CuS MSs, CuS NSs, and CuS NPs were demonstrated with the bacterium Escherichia coli (E. coli). Bacterial growth curves and ROS generation tests indicated that CuS NSs and CuS NPs had higher light-driven antibacterial activities than that of CuS MSs. ROS of hydroxyl (·OH) and superoxide anion radicals (O2-) were investigated via an electron spin resonance (ESR) spectroscopic analysis by respectively incubating CuS MSs, CuS NSs, and CuS NPs with E. coli under simulated solar light irradiation. Furthermore, E. coli incubated with CuS NPs and CuS NSs showed substantial bacterial degradation after NIR laser irradiation, which was attributed to their photothermal killing effects. Light-driven antibacterial mechanisms of CuS NSs and CuS NPs were investigated, and we discovered that under simulated solar and NIR light irradiation, CuS NSs and CuS NPs produced photoinduced electrons, and the copper ions and photoinduced electrons then reacted with atmospheric moisture to produce hydroxide and superoxide anion radicals and heat, resulting in bacterial mortality.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Goodluck Okoro
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, Indonesia
| | | | - Dwi Rahayu
- Dharma Husada Nursing Academy, Kediri 64114, Indonesia
| | - Wei-Tung Hsu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
4
|
Chen JC. Immunological Consequences of In Utero Exposure to Foreign Antigens. Front Immunol 2021; 12:638435. [PMID: 33936052 PMCID: PMC8082100 DOI: 10.3389/fimmu.2021.638435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/26/2021] [Indexed: 01/23/2023] Open
Abstract
Immunologic tolerance refers to a state of immune nonreactivity specific to particular antigens as an important issue in the field of transplantation and the management of autoimmune diseases. Tolerance conceptually originated from Owen’s observation of blood cell sharing in twin calves. Owen’s conceptual framework subsequently constituted the backbone of Medawar’s “actively acquired tolerance” as the major tenet of modern immunology. Based upon this knowledge, the delivery of genetically distinct hematopoietic stem cells into pre-immune fetuses represented a novel and unique approach to their engraftment without the requirement of myeloablation or immunosuppression. It might also make fetal recipients commit donor alloantigens to memory of their patterns as “self” so as to create a state of donor-specific tolerance. Over the years, the effort made experimentally or clinically toward in utero marrow transplantation could not reliably yield sufficient hematopoietic chimerism for curing candidate diseases as anticipated, nor did allogeneic graft tolerance universally develop as envisaged by Medawar following in utero exposure to various forms of alloantigens from exosomes, lymphocytes or marrow cells. Enduring graft tolerance was only conditional on a state of significant hematopoietic chimerism conferred by marrow inocula. Notably, fetal exposure to ovalbumin, oncoprotein and microbial antigens did not elicit immune tolerance, but instead triggered an event of sensitization to the antigens inoculated. These fetal immunogenic events might be clinically relevant to prenatal imprinting of atopy, immune surveillance against developmental tumorigenesis, and prenatal immunization against infectious diseases. Briefly, the immunological consequences of fetal exposure to foreign antigens could be tolerogenic or immunogenic, relying upon the type or nature of antigens introduced. Thus, the classical school of “actively acquired tolerance” might oversimplify the interactions between developing fetal immune system and antigens. Such interactions might rely upon fetal macrophages, which showed up earlier than lymphocytes and were competent to phagocytose foreign antigens so as to bridge toward antigen-specific adaptive immunity later on in life. Thus, innate fetal macrophages may be the potential basis for exploring how the immunological outcome of fetal exposure to foreign antigens is determined to improve the likelihood and reliability of manipulating fetal immune system toward tolerization or immunization to antigens.
Collapse
Affiliation(s)
- Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|