1
|
Zhang D, Wang H, Chen C, Lu G, Yin Y, Ren M, Huang J. Preparation and identification of a fluorescent probe with CsPbBr 3perovskite quantum dots and CD44v6 specific peptide for gastric cancer imaging. NANOTECHNOLOGY 2024; 36:02LT02. [PMID: 39406258 DOI: 10.1088/1361-6528/ad86c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Since the sensitivity and accuracy of traditional detection for early gastric cancer diagnosis are still insufficient, it is significant to continuously optimize the optical molecular imaging detection technology based on an endoscopic platform. The signal intensity and stability of traditional chemical fluorescent dyes are low, which hinders the clinical application of molecular imaging detection technology. This work developed a probe based on perovskite quantum dots (PQDs) and peptide ligands. By utilizing CsPbBr3perovskite PQDs modified by azithromycin (AZI), combined with the specific polypeptide ligand of CD44v6, a gastric cancer biomarker, the perovskite-based probe (AZI-PQDs probe) which can specifically identify gastric cancer tumor was prepared. Owing to the high photoluminescence quantum yield of CsPbBr3PQDs, the naked eye can observe the imaging under the excitation of the hand-held ultraviolet light source. AZI-PQDs probe can accurately identify gastric cancer cells, tissues, and xenograft models with experiments ofex vivoandin vivofluorescence imaging detection. It also exhibited low toxicity and immunogenicity, indicating the safety of the probe. This work provides a probe combined with cancer specificity and a reliable fluorescent signal that has the potential for application in gastric cancer optical molecular imaging.
Collapse
Affiliation(s)
- Dan Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hao Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science &Technology, Xi'an 710021, People's Republic of China
| | - Chunyang Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science &Technology, Xi'an 710021, People's Republic of China
| | - Guifang Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yan Yin
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mudan Ren
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jin Huang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- Shool of Electronic Information and Artificial Intelligence, Shaanxi University of Science &Technology, Xi'an 710021, People's Republic of China
| |
Collapse
|
2
|
Lin C, Chu Y, Zheng Y, Gu S, Hu Y, He J, Shen Z. Macrophages: plastic participants in the diagnosis and treatment of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1337129. [PMID: 38650924 PMCID: PMC11033442 DOI: 10.3389/fimmu.2024.1337129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment.
Collapse
Affiliation(s)
- Chen Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yidian Chu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye Zheng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yanghao Hu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jiali He
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhisen Shen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Kuras M. Exploring the Complex and Multifaceted Interplay between Melanoma Cells and the Tumor Microenvironment. Int J Mol Sci 2023; 24:14403. [PMID: 37762707 PMCID: PMC10531837 DOI: 10.3390/ijms241814403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Malignant melanoma is a very aggressive skin cancer, characterized by a heterogeneous nature and high metastatic potential. The incidence of melanoma is continuously increasing worldwide, and it is one of the most common cancers in young adults. In the past twenty years, our understanding of melanoma biology has increased profoundly, and disease management for patients with disseminated disease has improved due to the emergence of immunotherapy and targeted therapy. However, a significant fraction of patients relapse or do not respond adequately to treatment. This can partly be explained by the complex signaling between the tumor and its microenvironment, giving rise to melanoma phenotypes with different patterns of disease progression. This review focuses on the key aspects and complex relationship between pathogenesis, genetic abnormalities, tumor microenvironment, cellular plasticity, and metabolic reprogramming in melanoma. By acquiring a deeper understanding of the multifaceted features of melanomagenesis, we can reach a point of more individualized and patient-centered disease management and reduced costs of ineffective treatments.
Collapse
Affiliation(s)
- Magdalena Kuras
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden;
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|
4
|
Das A, Ghose A, Naicker K, Sanchez E, Chargari C, Rassy E, Boussios S. Advances in adoptive T-cell therapy for metastatic melanoma. Curr Res Transl Med 2023; 71:103404. [PMID: 37478776 DOI: 10.1016/j.retram.2023.103404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Adoptive T cell therapy (ACT) is a fast developing, niche area of immunotherapy (IO), which is revolutionising the therapeutic landscape of solid tumour oncology, especially metastatic melanoma (MM). Identifying tumour antigens (TAs) as potential targets, the ACT response is mediated by either Tumour Infiltrating Lymphocytes (TILs) or genetically modified T cells with specific receptors - T cell receptors (TCRs) or chimeric antigen receptors (CARs) or more prospectively, natural killer (NK) cells. Clinical trials involving ACT in MM from 2006 to present have shown promising results. Yet it is not without its drawbacks which include significant auto-immune toxicity and need for pre-conditioning lymphodepletion. Although immune-modulation is underway using various combination therapies in the hope of enhancing efficacy and reducing toxicity. Our review article explores the role of ACT in MM, including the various modalities - their safety, efficacy, risks and their development in the trial and the real world setting.
Collapse
Affiliation(s)
- Aparimita Das
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chennai, India
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London, United Kingdom
| | - Kevin Naicker
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié Salpêtrière University Hospital, Paris, France
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805, Villejuif, France
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Kent and Medway Medical School, University of Kent, Canterbury, United Kingdom; Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, SE1 9RT, London, United Kingdom; AELIA Organization, 9th Km Thessaloniki, Thermi 57001, Thessaloniki, Greece.
| |
Collapse
|
5
|
Park SH, Eun R, Heo J, Lim YT. Nanoengineered drug delivery in cancer immunotherapy for overcoming immunosuppressive tumor microenvironment. Drug Deliv Transl Res 2023; 13:2015-2031. [PMID: 36581707 DOI: 10.1007/s13346-022-01282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Almost like a living being in and of itself, tumors actively interact with and modify their environment to escape immune responses. Owing to the pre-formation of cancer-favorable microenvironment prior to anti-cancer treatment, the numerous attempts that followed propose limited efficacy in oncology. Immunogenicity by activation of immune cells within the tumor microenvironment or recruitment of immune cells from nearby lymph nodes is quickly offset as the immunosuppressive environment, rapidly converting immunogenic cells into immune suppressive cells, overriding the immune system. Tumor cells, as well as regulatory cells, namely M2 macrophages, Treg cells, and MDSCs, derived by the immunosuppressive environment, also cloak from potential anti-tumoral factors by directly or indirectly secreting cytokines, such as IL-10 and TGF-β, related to immune regulation. Enzymes and other metabolic or angiogenetic constituents - VEGF, IDO1, and iNOS - are also employed directed for anti-cancer immune cell malfunctioning. Therefore, the conversion of "cold" immunosuppressive environment into "hot" immune responsive environment is of paramount importance, bestowing the advances in the field of cancer immunotherapy the opportunity to wholly fulfill its intended purpose. This paper reviews the mechanisms by which tumors wield to exercise immune suppression and the nanoengineered delivery strategies being developed to overcome this suppression.
Collapse
Affiliation(s)
- Sei Hyun Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Ryounho Eun
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Janghun Heo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea.
| |
Collapse
|
6
|
Torres-Sanchez A, Rivera-Robles M, Castillo-Pichardo L, Martínez-Ferrer M, Dorta-Estremera SM, Dharmawardhane S. Rac and Cdc42 inhibitors reduce macrophage function in breast cancer preclinical models. Front Oncol 2023; 13:1152458. [PMID: 37397366 PMCID: PMC10313121 DOI: 10.3389/fonc.2023.1152458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background Metastatic disease lacks effective treatments and remains the primary cause of mortality from epithelial cancers, especially breast cancer. The metastatic cascade involves cancer cell migration and invasion and modulation of the tumor microenvironment (TME). A viable anti-metastasis strategy is to simultaneously target the migration of cancer cells and the tumor-infiltrating immunosuppressive inflammatory cells such as activated macrophages, neutrophils, and myeloid-derived suppressor cells (MDSC). The Rho GTPases Rac and Cdc42 are ideal molecular targets that regulate both cancer cell and immune cell migration, as well as their crosstalk signaling at the TME. Therefore, we tested the hypothesis that Rac and Cdc42 inhibitors target immunosuppressive immune cells, in addition to cancer cells. Our published data demonstrate that the Vav/Rac inhibitor EHop-016 and the Rac/Cdc42 guanine nucleotide association inhibitor MBQ-167 reduce mammary tumor growth and prevent breast cancer metastasis from pre-clinical mouse models without toxic effects. Methods The potential of Rac/Cdc42 inhibitors EHop-016 and MBQ-167 to target macrophages was tested in human and mouse macrophage cell lines via activity assays, MTT assays, wound healing, ELISA assays, and phagocytosis assays. Immunofluorescence, immunohistochemistry, and flow cytometry were used to identify myeloid cell subsets from tumors and spleens of mice following EHop-016 or MBQ-167 treatment. Results EHop-016 and MBQ-167 inhibited Rac and Cdc42 activation, actin cytoskeletal extensions, migration, and phagocytosis without affecting macrophage cell viability. Rac/Cdc42 inhibitors also reduced tumor- infiltrating macrophages and neutrophils in tumors of mice treated with EHop-016, and macrophages and MDSCs from spleens and tumors of mice with breast cancer, including activated macrophages and monocytes, following MBQ-167 treatment. Mice with breast tumors treated with EHop-016 significantly decreased the proinflammatory cytokine Interleukin-6 (IL-6) from plasma and the TME. This was confirmed from splenocytes treated with lipopolysaccharide (LPS) where EHop-016 or MBQ-167 reduced IL-6 secretion in response to LPS. Conclusion Rac/Cdc42 inhibition induces an antitumor environment via inhibition of both metastatic cancer cells and immunosuppressive myeloid cells in the TME.
Collapse
Affiliation(s)
- Anamaris Torres-Sanchez
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Michael Rivera-Robles
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Magaly Martínez-Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Stephanie M. Dorta-Estremera
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Microbiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| |
Collapse
|
7
|
Huang Z, Efthymiadou A, Liang N, Fan R, Treuter E. Antagonistic action of GPS2 and KDM1A at enhancers governs alternative macrophage activation by interleukin 4. Nucleic Acids Res 2023; 51:1067-1086. [PMID: 36610795 PMCID: PMC9943668 DOI: 10.1093/nar/gkac1230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
The Th2 cytokine interleukin 4 (IL4) promotes macrophage differentiation into alternative subtypes and plays important roles in physiology, in metabolic and inflammatory diseases, in cancer and in tissue regeneration. While the regulatory transcription factor networks governing IL4 signaling are already well-characterized, it is currently less understood which transcriptional coregulators are involved and how they operate mechanistically. In this study, we discover that G protein pathway suppressor 2 (GPS2), a core subunit of the HDAC3 corepressor complex assembled by SMRT and NCOR, represses IL4-dependent enhancer activation in mouse macrophages. Our genome-wide and gene-specific characterization revealed that, instead of directly repressing STAT6, chromatin-bound GPS2 cooperates with SMRT and NCOR to antagonize enhancer activation by lysine demethylase 1A (KDM1A, LSD1). Mechanistically, corepressor depletion increased KDM1A recruitment to enhancers linked to IL4-induced genes, accompanied by demethylation of the repressive histone marks H3K9me2/3 without affecting H3K4me1/2, the classic KDM1A substrates for demethylation in other cellular contexts. This in turn caused enhancer and gene activation already in the absence of IL4/STAT6 and sensitized the STAT6-dependent IL4 responsiveness of macrophages. Thus, our work identified with the antagonistic action of a GPS2-containing corepressor complex and the lysine demethylase KDM1A a hitherto unknown epigenetic corepressor-coactivator switching mechanism that governs alternative macrophage activation.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Astradeni Efthymiadou
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rongrong Fan
- Correspondence may also be addressed to Rongrong Fan. Tel: +46 8 524 81161;
| | - Eckardt Treuter
- To whom correspondence should be addressed. Tel: +46 8 524 81060;
| |
Collapse
|
8
|
Kimm MA, Kästle S, Stechele MMR, Öcal E, Richter L, Ümütlü MR, Schinner R, Öcal O, Salvermoser L, Alunni-Fabbroni M, Seidensticker M, Goldberg SN, Ricke J, Wildgruber M. Early monocyte response following local ablation in hepatocellular carcinoma. Front Oncol 2022; 12:959987. [PMID: 36353535 PMCID: PMC9638411 DOI: 10.3389/fonc.2022.959987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2023] Open
Abstract
Local ablative therapies are established treatment modalities in the treatment of early- and intermediate-stage hepatocellular carcinoma (HCC). Systemic effects of local ablation on circulating immune cells may contribute to patients' response. Depending on their activation, myeloid cells are able to trigger HCC progression as well as to support anti-tumor immunity. Certain priming of monocytes may already occur while still in the circulation. By using flow cytometry, we analyzed peripheral blood monocyte cell populations from a prospective clinical trial cohort of 21 HCC patients following interstitial brachytherapy (IBT) or radiofrequency ablation (RFA) and investigated alterations in the composition of monocyte subpopulations and monocytic myeloid-derived suppressor cells (mMDSCs) as well as receptors involved in orchestrating monocyte function. We discovered that mMDSC levels increased following both IBT and RFA in virtually all patients. Furthermore, we identified varying alterations in the level of monocyte subpopulations following radiation compared to RFA. (A) Liquid biopsy liquid biopsy of circulating monocytes in the future may provide information on the inflammatory response towards local ablation as part of an orchestrated immune response.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sophia Kästle
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias M. R. Stechele
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elif Öcal
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Muzaffer R. Ümütlü
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Osman Öcal
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Salvermoser
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S. Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Division of Image-guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
9
|
Li Z, Yu Q, Zhu Q, Yang X, Li Z, Fu J. Applications of machine learning in tumor-associated macrophages. Front Immunol 2022; 13:985863. [PMID: 36211379 PMCID: PMC9538115 DOI: 10.3389/fimmu.2022.985863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Evaluation of tumor-host interaction and intratumoral heterogeneity in the tumor microenvironment (TME) is gaining increasing attention in modern cancer therapies because it can reveal unique information about the tumor status. As tumor-associated macrophages (TAMs) are the major immune cells infiltrating in TME, a better understanding of TAMs could help us further elucidate the cellular and molecular mechanisms responsible for cancer development. However, the high-dimensional and heterogeneous data in biology limit the extensive integrative analysis of cancer research. Machine learning algorithms are particularly suitable for oncology data analysis due to their flexibility and scalability to analyze diverse data types and strong computation power to learn underlying patterns from massive data sets. With the application of machine learning in analyzing TME, especially TAM’s traceable status, we could better understand the role of TAMs in tumor biology. Furthermore, we envision that the promotion of machine learning in this field could revolutionize tumor diagnosis, treatment stratification, and survival predictions in cancer research. In this article, we described key terms and concepts of machine learning, reviewed the applications of common methods in TAMs, and highlighted the challenges and future direction for TAMs in machine learning.
Collapse
Affiliation(s)
- Zhen Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qijun Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyuan Zhu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Yang
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhaobin Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Fu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- *Correspondence: Jie Fu,
| |
Collapse
|
10
|
Leveraging macrophages for cancer theranostics. Adv Drug Deliv Rev 2022; 183:114136. [PMID: 35143894 DOI: 10.1016/j.addr.2022.114136] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
As fundamental immune cells in innate and adaptive immunity, macrophages engage in a double-edged relationship with cancer. Dissecting the character of macrophages in cancer development facilitates the emergence of macrophages-based new strategies that encompass macrophages as theranostic targets/tools of interest for treating cancer. Herein, we provide a concise overview of the mixed roles of macrophages in cancer pathogenesis and invasion as a foundation for the review discussions. We survey the latest progress on macrophage-based cancer theranostic strategies, emphasizing two major strategies, including targeting the endogenous tumor-associated macrophages (TAMs) and engineering the adoptive macrophages to reverse the immunosuppressive environment and augment the cancer theranostic efficacy. We also discuss and provide insights on the major challenges along with exciting opportunities for the future of macrophage-based cancer theranostic approaches.
Collapse
|
11
|
Ding X, Sun X, Cai H, Wu L, Liu Y, Zhao Y, Zhou D, Yu G, Zhou X. Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Front Oncol 2022; 11:786913. [PMID: 35070992 PMCID: PMC8770285 DOI: 10.3389/fonc.2021.786913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages play critical roles in tumor progression. In the tumor microenvironment, macrophages display highly diverse phenotypes and may perform antitumorigenic or protumorigenic functions in a context-dependent manner. Recent studies have shown that macrophages can be engineered to transport drug nanoparticles (NPs) to tumor sites in a targeted manner, thereby exerting significant anticancer effects. In addition, macrophages engineered to express chimeric antigen receptors (CARs) were shown to actively migrate to tumor sites and eliminate tumor cells through phagocytosis. Importantly, after reaching tumor sites, these engineered macrophages can significantly change the otherwise immune-suppressive tumor microenvironment and thereby enhance T cell-mediated anticancer immune responses. In this review, we first introduce the multifaceted activities of macrophages and the principles of nanotechnology in cancer therapy and then elaborate on macrophage engineering via nanotechnology or genetic approaches and discuss the effects, mechanisms, and limitations of such engineered macrophages, with a focus on using live macrophages as carriers to actively deliver NP drugs to tumor sites. Several new directions in macrophage engineering are reviewed, such as transporting NP drugs through macrophage cell membranes or extracellular vesicles, reprogramming tumor-associated macrophages (TAMs) by nanotechnology, and engineering macrophages with CARs. Finally, we discuss the possibility of combining engineered macrophages and other treatments to improve outcomes in cancer therapy.
Collapse
Affiliation(s)
- Xiaoling Ding
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xinchen Sun
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, Taizhou Peoples' Hospital, Taizhou, China
| | - Huihui Cai
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, The Sixth Nantong People's Hospital, Nantong, China
| | - Lei Wu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Ying Liu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yu Zhao
- Department of Immunology, Southeast University, School of Medicine, Nanjing, China
| | - Dingjingyu Zhou
- Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|