1
|
Zhao Y, Cao G, Wang Z, Liu D, Ren L, Ma D. The recent progress of bone regeneration materials containing EGCG. J Mater Chem B 2024; 12:9835-9844. [PMID: 39257355 DOI: 10.1039/d4tb00604f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most effective active ingredient in tea polyphenols and belongs to the category of catechins. EGCG has excellent antioxidant activity, anti-inflammatory, osteogenesis-promoting, and antibacterial properties, and has been widely studied in orthopedic diseases such as osteoporosis. To reach the lesion site, achieve sustained release, promote osteogenesis, regulate macrophage polarization, and improve the physical properties of materials, EGCG needs to be cross-linked or incorporated in bone regeneration materials. This article reviews the application of bone regeneration materials combined with EGCG, including natural polymer bone regeneration materials, synthetic polymer bone regeneration materials, bioceramic bone regeneration materials, metal bone regeneration materials, hydrogel bone regeneration materials and metal-EGCG networks. In addition, the fabrication methods for the regenerated scaffolds are also elaborated in the text. To sum up, it reveals the excellent development potential of materials containing EGCG and the shortcomings of current research, which will provide important reference for the future exploration of bone regeneration materials containing EGCG.
Collapse
Affiliation(s)
- Yaoye Zhao
- Lanzhou University Second Hospital, Lanzhou University, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730030, Gansu, China.
| | - Guoding Cao
- Lanzhou University Second Hospital, Lanzhou University, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730030, Gansu, China.
| | - Zixin Wang
- School of Stomatology, Lanzhou University, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730000, Gansu, China
| | - Desheng Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Liling Ren
- School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Dongyang Ma
- Lanzhou University Second Hospital, Lanzhou University, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730030, Gansu, China.
| |
Collapse
|
2
|
DeMel DC, Wagner GA, Maresca JA, Geibel JP. Application of a 3D bioprinter: jet technology for 'biopatch' development using cells on hydrogel supports. Biotechniques 2024; 76:52-62. [PMID: 38084384 DOI: 10.2144/btn-2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Additive manufacturing (3D printing) has been deployed across multiple platforms to fabricate bioengineered tissues. We demonstrate the use of a Thermal Inkjet Pipette System (TIPS) for targeted delivery of cells onto manufactured substrates to design bio-bandages. Two cell lines - HEK 293 (kidney) and K7M2 wt (bone) - were applied using TIPS. We demonstrate a novel means for targeted cell delivery to a hydrogel support structure. These cell/support constructs (bio-bandages) had a high viability for survival and growth over extended periods. Combining a flexible biosupport with application of cells via TIPS printing now for the first time allows for custom cell substrate constructs with various densities to be deployed for regenerative medicine applications.
Collapse
Affiliation(s)
- Derek C DeMel
- Yale School of Engineering & Applied Science, New Haven, CT 06519, USA
| | - Grayson A Wagner
- Yale School of Engineering & Applied Science, New Haven, CT 06519, USA
| | | | - John P Geibel
- John B. Pierce Laboratory, New Haven, CT 06519, USA
- Department of Surgery & Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
3
|
Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio 2023; 22:100741. [PMID: 37576867 PMCID: PMC10413201 DOI: 10.1016/j.mtbio.2023.100741] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Traditional strategies in bone tissue engineering have focused primarily on mimicking the extracellular matrix (ECM) of bone in terms of structure and composition. However, the synergistic effects of other cues from the microenvironment during bone regeneration are often neglected. The bone microenvironment is a sophisticated system that includes physiological (e.g., neighboring cells such as macrophages), chemical (e.g., oxygen, pH), and physical factors (e.g., mechanics, acoustics) that dynamically interact with each other. Microenvironment-targeted strategies are increasingly recognized as crucial for successful bone regeneration and offer promising solutions for advancing bone tissue engineering. This review provides a comprehensive overview of current microenvironment-targeted strategies and challenges for bone regeneration and further outlines prospective directions of the approaches in construction of bone organoids.
Collapse
Affiliation(s)
- Shuyue Hao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| |
Collapse
|
4
|
Maresca JA, DeMel DC, Wagner GA, Haase C, Geibel JP. Three-Dimensional Bioprinting Applications for Bone Tissue Engineering. Cells 2023; 12:cells12091230. [PMID: 37174630 PMCID: PMC10177443 DOI: 10.3390/cells12091230] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The skeletal system is a key support structure within the body. Bones have unique abilities to grow and regenerate after injury. Some injuries or degeneration of the tissues cannot rebound and must be repaired by the implantation of foreign objects following injury or disease. This process is invasive and does not always improve the quality of life of the patient. New techniques have arisen that can improve bone replacement or repair. 3D bioprinting employs a printer capable of printing biological materials in multiple directions. 3D bioprinting potentially requires multiple steps and additional support structures, which may include the use of hydrogels for scaffolding. In this review, we discuss normal bone physiology and pathophysiology and how bioprinting can be adapted to further the field of bone tissue engineering.
Collapse
Affiliation(s)
- Jamie A Maresca
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
| | - Derek C DeMel
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
| | - Grayson A Wagner
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
| | - Colin Haase
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
| | - John P Geibel
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
- Department of Surgery, School of Medicine, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
5
|
Applications of Biotechnology to the Craniofacial Complex: A Critical Review. Bioengineering (Basel) 2022; 9:bioengineering9110640. [DOI: 10.3390/bioengineering9110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Biotechnology shows a promising future in bridging the gap between biomedical basic sciences and clinical craniofacial practice. The purpose of the present review is to investigate the applications of biotechnology in the craniofacial complex. Methods: This critical review was conducted by using the following keywords in the search strategy: “biotechnology”, “bioengineering”, “craniofacial”, “stem cells”, “scaffolds”, “biomarkers”, and ”tissue regeneration”. The databases used for the electronic search were the Cochrane Library, Medline (PubMed), and Scopus. The search was conducted for studies published before June 2022. Results: The applications of biotechnology are numerous and provide clinicians with the great benefit of understanding the etiology of dentofacial deformities, as well as treating the defected areas. Research has been focused on craniofacial tissue regeneration with the use of stem cells and scaffolds, as well as in bioinformatics with the investigation of growth factors and biomarkers capable of providing evidence for craniofacial growth and development. This review presents the biotechnological opportunities in the fields related to the craniofacial complex and attempts to answer a series of questions that may be of interest to the reader. Conclusions: Biotechnology seems to offer a bright future ahead, improving and modernizing the clinical management of cranio-dento-facial diseases. Extensive research is needed as human studies on this subject are few and have controversial results.
Collapse
|
6
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
7
|
Cao X, Ge W, Wang Y, Ma M, Wang Y, Zhang B, Wang J, Guo Y. Rapid Fabrication of MgNH 4PO 4·H 2O/SrHPO 4 Porous Composite Scaffolds with Improved Radiopacity via 3D Printing Process. Biomedicines 2021; 9:biomedicines9091138. [PMID: 34572326 PMCID: PMC8468055 DOI: 10.3390/biomedicines9091138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Although bone repair scaffolds are required to possess high radiopacity to be distinguished from natural bone tissues in clinical applications, the intrinsic radiopacity of them is usually insufficient. For improving the radiopacity, combining X-ray contrast agents with bone repair scaffolds is an effective method. In the present research, MgNH4PO4·H2O/SrHPO4 3D porous composite scaffolds with improved radiopacity were fabricated via the 3D printing technique. Here, SrHPO4 was firstly used as a radiopaque agent to improve the radiopacity of magnesium phosphate scaffolds. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) were used to characterize the phases, morphologies, and element compositions of the 3D porous composite scaffolds. The radiography image showed that greater SrHPO4 contents corresponded to higher radiopacity. When the SrHPO4 content reached 9.34%, the radiopacity of the composite scaffolds was equal to that of a 6.8 mm Al ladder. The porosity and in vitro degradation of the porous composite scaffolds were studied in detail. The results show that magnesium phosphate scaffolds with various Sr contents could sustainably degrade and release the Mg, Sr, and P elements during the experiment period of 28 days. In addition, the cytotoxicity on MC3T3-E1 osteoblast precursor cells was evaluated, and the results show that the porous composite scaffolds with a SrHPO4 content of 9.34% possessed superior cytocompatibility compared to that of the pure MgNH4PO4·H2O scaffolds when the extract concentration was 0.1 g/mL. Cell adhesion experiments showed that all of the scaffolds could support MC3T3-E1 cellular attachment well. This research indicates that MgNH4PO4·H2O/SrHPO4 porous composite scaffolds have potential applications in the bone repair fields.
Collapse
Affiliation(s)
- Xiaofeng Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Wufei Ge
- Department of Orthopedics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China;
| | - Yihu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Ming Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|